The shear strength of sand-foam mixtures plays a crucial role in ensuring successful earth pressure balance(EPB)shield tunneling.Since the sand-foam mixtures are constantly sheared by the cutterhead and the screw conv...The shear strength of sand-foam mixtures plays a crucial role in ensuring successful earth pressure balance(EPB)shield tunneling.Since the sand-foam mixtures are constantly sheared by the cutterhead and the screw conveyor with varied rotation speeds during tunneling,it is non-trivial to investigate the effect of shear rates on the undrained shear strength of sand-foam mixtures under chamber pressures to extend the understanding on the tunneling process.This study conducted a series of pressurized vane shear tests to investigate the role of shear rates on the peak and residual strengths of sand-foam mixtures at different pore states.Different from the shear-rate characteristics of natural sands or clay,the results showed that the peak strength of sand-foam mixtures under high vertical total stress(σ_(v)≥200 kPa)and low foam injection ratio(FIR30%)decreased with the increase in shear rate.Otherwise,the peak strength was not measurably affected by shear rates.The sand-foam mixtures in the residual state resembled low-viscous fluid with yield stress and the residual strength increased slightly with shear rates.In addition,the peak and residual strengths were approximately linear with vertical effective stress regardless of the total stress and FIR.The peak effective internal friction angle remained almost invariant in a low shear rate(γ′<0.25 s1)but decreased when the shear rate continued increasing.The residual effective internal friction angle was lower than the peak counterpart and insensitive to shear rates.This study unveiled the role of shear rates in the undrained shear strength of sand-foam mixtures with various FIRs and vertical total stresses.The findings can extend the understanding of the rate-dependent shear characteristics of conditioned soils and guide the decision-making of soil conditioning schemes in the EPB shield tunneling practice.展开更多
A new approach is developed to determine the shear wave velocity in saturated soft to firm clays using measurements of the liquid limit, plastic limit, and natural water content with depth. The shear wave velocity is ...A new approach is developed to determine the shear wave velocity in saturated soft to firm clays using measurements of the liquid limit, plastic limit, and natural water content with depth. The shear wave velocity is assessed using the site-specific variation of the natural water content with the effective mean stress. Subsequently, an iterative process is envisaged to obtain the clay stiffness and strength parameters.The at-rest earth pressure coefficient, as well as bearing capacity factor and rigidity index related to the cone penetration test, is also acquired from the analyses. Comparisons are presented between the measured clay parameters and the results of corresponding analyses in five different case studies. It is demonstrated that the presented approach can provide acceptable estimates of saturated clay stiffness and strength parameters. One of the main privileges of the presented methodology is the site-specific procedure developed based on the relationships between clay strength and stiffness parameters, rather than adopting direct correlations. Despite of the utilized iterative processes, the presented approach can be easily implemented using a simple spreadsheet, benefiting both geotechnical researchers and practitioners.展开更多
In this work typical mechanical properties for a catalyst support material, ZSM5 (a spray-dried granular zeolite), have been measured in order to relate the bulk behaviour of the powder material to the single partic...In this work typical mechanical properties for a catalyst support material, ZSM5 (a spray-dried granular zeolite), have been measured in order to relate the bulk behaviour of the powder material to the single particle mechanical properties. Particle shape and size distribution of the powders, determined by laser diffraction and scanning electron microscopy (SEM), confirmed the spherical shape of the spray-dried particles. The excellent flowability of the material was assessed by typical methods such as the Hausner ratio and the Cart index, This was confirmed by bulk measurements of the particle-particle internal friction parameter and flow function using a Schulze shear cell, which also illustrated the low compressibility of the material. Single particle compression was used to characterize single particle mechanical properties such as reduced elastic modulus and strength from Hertz contact mechanics theory. Comparison with surface properties obtained from nanoindentation suggests heterogeneity, the surface being harder than the core. In order to evaluate the relationship between single particle mechanical properties and bulk compression behaviour, uniaxial confined compression was carried out. It was determined that the Adams model was suitable for describing the bulk compression and furthermore that the Adams model parameter, apparent strength of single particles, was in good agreement with the single particle strength determined from single particle compression test.展开更多
The methods used for flow characterization of a powder mass include the angle of repose (AOR), Carr index (CI), and powder flow tester (PFT). The use of nanosilica as a flow modifier (glidant) is very common i...The methods used for flow characterization of a powder mass include the angle of repose (AOR), Carr index (CI), and powder flow tester (PFT). The use of nanosilica as a flow modifier (glidant) is very common in industry. This study aims to compare the glidant effect of hydrophobic and hydrophilic silica on a poorly flowable active pharmaceutical ingredient (ibuprofen) by different flow characterization techniques. Different percentages (0.5, 1.0, and 2.0 wt%) of both types of mixed silica–ibuprofen powders were evaluated by the AOR, CI, bulk density, and PFT. The flow factor, effective angle of friction, and cohesion were determined to explain the bulk powder properties. The results show that different types of silica show different levels of flow property improvement, but the techniques do not equally discriminate the differences. Hydrophobic silica results in better improvement of the flow property than hydrophilic silica, probably because of its better surface coverage of silica on the host particles. Change of the bulk density with applied pressure was significant for the different powders. This study demonstrates that combining several characterization methods provides a better understanding of bulk powder flow properties with respect to powder–process relationships than a single flow indicator.展开更多
基金the National Outstanding Youth Science Fund Project of the National Natural Science Foundation of China(Grant No.52022112)the Hunan Provincial Innovation Foundation for Postgraduate of China(Grant No.2020zzts152)are acknowledged.
文摘The shear strength of sand-foam mixtures plays a crucial role in ensuring successful earth pressure balance(EPB)shield tunneling.Since the sand-foam mixtures are constantly sheared by the cutterhead and the screw conveyor with varied rotation speeds during tunneling,it is non-trivial to investigate the effect of shear rates on the undrained shear strength of sand-foam mixtures under chamber pressures to extend the understanding on the tunneling process.This study conducted a series of pressurized vane shear tests to investigate the role of shear rates on the peak and residual strengths of sand-foam mixtures at different pore states.Different from the shear-rate characteristics of natural sands or clay,the results showed that the peak strength of sand-foam mixtures under high vertical total stress(σ_(v)≥200 kPa)and low foam injection ratio(FIR30%)decreased with the increase in shear rate.Otherwise,the peak strength was not measurably affected by shear rates.The sand-foam mixtures in the residual state resembled low-viscous fluid with yield stress and the residual strength increased slightly with shear rates.In addition,the peak and residual strengths were approximately linear with vertical effective stress regardless of the total stress and FIR.The peak effective internal friction angle remained almost invariant in a low shear rate(γ′<0.25 s1)but decreased when the shear rate continued increasing.The residual effective internal friction angle was lower than the peak counterpart and insensitive to shear rates.This study unveiled the role of shear rates in the undrained shear strength of sand-foam mixtures with various FIRs and vertical total stresses.The findings can extend the understanding of the rate-dependent shear characteristics of conditioned soils and guide the decision-making of soil conditioning schemes in the EPB shield tunneling practice.
文摘A new approach is developed to determine the shear wave velocity in saturated soft to firm clays using measurements of the liquid limit, plastic limit, and natural water content with depth. The shear wave velocity is assessed using the site-specific variation of the natural water content with the effective mean stress. Subsequently, an iterative process is envisaged to obtain the clay stiffness and strength parameters.The at-rest earth pressure coefficient, as well as bearing capacity factor and rigidity index related to the cone penetration test, is also acquired from the analyses. Comparisons are presented between the measured clay parameters and the results of corresponding analyses in five different case studies. It is demonstrated that the presented approach can provide acceptable estimates of saturated clay stiffness and strength parameters. One of the main privileges of the presented methodology is the site-specific procedure developed based on the relationships between clay strength and stiffness parameters, rather than adopting direct correlations. Despite of the utilized iterative processes, the presented approach can be easily implemented using a simple spreadsheet, benefiting both geotechnical researchers and practitioners.
基金the EU for financial support through the Framework 6 Marie Curie Action "NEWGROWTH", contract number MEST-CT-2005-020724Johnson Matthey Plc and Birmingham Science City for funding and supporting this research
文摘In this work typical mechanical properties for a catalyst support material, ZSM5 (a spray-dried granular zeolite), have been measured in order to relate the bulk behaviour of the powder material to the single particle mechanical properties. Particle shape and size distribution of the powders, determined by laser diffraction and scanning electron microscopy (SEM), confirmed the spherical shape of the spray-dried particles. The excellent flowability of the material was assessed by typical methods such as the Hausner ratio and the Cart index, This was confirmed by bulk measurements of the particle-particle internal friction parameter and flow function using a Schulze shear cell, which also illustrated the low compressibility of the material. Single particle compression was used to characterize single particle mechanical properties such as reduced elastic modulus and strength from Hertz contact mechanics theory. Comparison with surface properties obtained from nanoindentation suggests heterogeneity, the surface being harder than the core. In order to evaluate the relationship between single particle mechanical properties and bulk compression behaviour, uniaxial confined compression was carried out. It was determined that the Adams model was suitable for describing the bulk compression and furthermore that the Adams model parameter, apparent strength of single particles, was in good agreement with the single particle strength determined from single particle compression test.
文摘The methods used for flow characterization of a powder mass include the angle of repose (AOR), Carr index (CI), and powder flow tester (PFT). The use of nanosilica as a flow modifier (glidant) is very common in industry. This study aims to compare the glidant effect of hydrophobic and hydrophilic silica on a poorly flowable active pharmaceutical ingredient (ibuprofen) by different flow characterization techniques. Different percentages (0.5, 1.0, and 2.0 wt%) of both types of mixed silica–ibuprofen powders were evaluated by the AOR, CI, bulk density, and PFT. The flow factor, effective angle of friction, and cohesion were determined to explain the bulk powder properties. The results show that different types of silica show different levels of flow property improvement, but the techniques do not equally discriminate the differences. Hydrophobic silica results in better improvement of the flow property than hydrophilic silica, probably because of its better surface coverage of silica on the host particles. Change of the bulk density with applied pressure was significant for the different powders. This study demonstrates that combining several characterization methods provides a better understanding of bulk powder flow properties with respect to powder–process relationships than a single flow indicator.