Affected by external environmental factors and evolution of dam performance, dam seepage behavior shows nonlinear time-varying characteristics. In this study, to predict and evaluate the long-term development trend an...Affected by external environmental factors and evolution of dam performance, dam seepage behavior shows nonlinear time-varying characteristics. In this study, to predict and evaluate the long-term development trend and short-term fluctuation of the dam seepage behavior, two monitoring models were developed, one for the base flow effect and one for daily variation of dam seepage elements. In the first model, to avoid the influence of the time lag effect on the evaluation of seepage variation with the time effect component of seepage elements, the base values of the seepage element and the reservoir water level were extracted using the wavelet multi-resolution analysis method, and the time effect component was separated by the established base flow effect monitoring model. For the development of the daily variation monitoring model for dam seepage elements, all the previous factors, of which the measured time series prior to the dam seepage element monitoring time may have certain influence on the monitored results, were considered. Those factors that were positively correlated with the analyzed seepage element were initially considered to be the support vector machine(SVM) model input factors, and then the SVM kernel function-based sensitivity analysis was performed to optimize the input factor set and establish the optimized daily variation SVM model. The efficiency and rationality of the two models were verified by case studies of the water level of two piezometric tubes buried under the slope of a concrete gravity dam.Sensitivity analysis of the optimized SVM model shows that the influences of the daily variation of the upstream reservoir water level and rainfall on the daily variation of piezometric tube water level are processes subject to normal distribution.展开更多
Considering three longitudinal displacement functions and uniform axial displacement functions for shear lag effect and uniform axial deformation of thin-walled box girder with varying depths,a simple and efficient me...Considering three longitudinal displacement functions and uniform axial displacement functions for shear lag effect and uniform axial deformation of thin-walled box girder with varying depths,a simple and efficient method with high precision to analyze the shear lag effect of thin-walled box girders was proposed.The governing differential equations and boundary conditions of the box girder under lateral loading were derived based on the energy-variational method,and closed-form solutions to stress and deflection corresponding to lateral loading were obtained.Analysis and calculations were carried out with respect to a trapezoidal box girder under concentrated loading or uniform loading and a rectangular box girder under concentrated loading.The analytical results were compared with numerical solutions derived according to the high order finite strip element method and the experimental results.The investigation shows that the closed-form solution is in good agreement with the numerical solutions derived according to the high order finite strip method and the experimental results,and has good stability.Because of the shear lag effect,the stress in cross-section centroid is no longer zero,thus it is not reasonable enough to assume that the strain in cross-section centroid is zero without considering uniform axial deformation.展开更多
Based on the consideration of longitudinal warp caused by shear lag effects on concrete slabs and bottom plates of steel beams,shear deformation of steel beams and interface slip between steel beams and concrete slabs...Based on the consideration of longitudinal warp caused by shear lag effects on concrete slabs and bottom plates of steel beams,shear deformation of steel beams and interface slip between steel beams and concrete slabs,the governing differential equations and boundary conditions of the steel-concrete composite box beams under lateral loading were derived using energy-variational method.The closed-form solutions for stress,deflection and slip of box beams under lateral loading were obtained,and the comparison of the analytical results and the experimental results for steel-concrete composite box beams under concentrated loading or uniform loading verifies the closed-form solution.The investigation of the parameters of load effects on composite box beams shows that:1) Slip stiffness has considerable impact on mid-span deflection and end slip when it is comparatively small;the mid-span deflection and end slip decrease significantly with the increase of slip stiffness,but when the slip stiffness reaches a certain value,its impact on mid-span deflection and end slip decreases to be negligible.2) The shear deformation has certain influence on mid-span deflection,and the larger the load is,the greater the influence is.3) The impact of shear deformation on end slip can be neglected.4) The strain of bottom plate of steel beam decreases with the increase of slip stiffness,while the shear lag effect becomes more significant.展开更多
In order to study the effect of time lag and stress loading rates on rock deformation,the conventional stepped stress loading mode was changed into a continuous mode to investigate the effect of effective pressure on ...In order to study the effect of time lag and stress loading rates on rock deformation,the conventional stepped stress loading mode was changed into a continuous mode to investigate the effect of effective pressure on permeability and porosity.The time lag effect of rock deformation illustrating the relationship between changes in permeability and steady time was studied.Permeability reduction ratios were measured under different stress loading rates which were achieved by different pump rate settings.The results show that permeability and porosity gradually decrease with increases in effective pressure.Permeability at high effective pressure attains stability quickly.Steady times at low effective pressure are very long.Reduction in permeability at lower stress loading rates is small,while,in contrast,it is large at high stress loading rates.展开更多
In order to resolve the traffic congestion problem, many cable-stayed bridges are designed with a large width to span ratio. This results in significant shear lag effect to cause nonuniform stress distribution along t...In order to resolve the traffic congestion problem, many cable-stayed bridges are designed with a large width to span ratio. This results in significant shear lag effect to cause nonuniform stress distribution along the flanges of the beam of bridge. This paper reports study on the shear lag effect of the Lanzhou Xiaoxihu Yellow River Bridge. A 3D finite element model of the bridge was developed and finite element analysis (FEA) was done to obtain the theoretical results. To evaluate the theoretical results, a scaled model was made to conduct static test in laboratory. The experiment results accorded with the results obtained by FEA. It is proved that FEA is an effective method to predict shear lag effect of bridges of this type.展开更多
This paper studies a kind of non-autonomous respiratory disease model with a lag effect.First of all,the permanence and extinction of the system are discussed by using the comparison principle and some differential in...This paper studies a kind of non-autonomous respiratory disease model with a lag effect.First of all,the permanence and extinction of the system are discussed by using the comparison principle and some differential inequality techniques.Second,it assumes that all coefficients of the system are periodic.The existence of positive periodic solutions of the system is proven,based on the continuation theorem in coincidence with the degree theory of Mawhin and Gaines.In the meantime,the global attractivity of positive periodic solutions of the system is obtained by constructing an appropriate Lyapunov functional and using the Razumikin theorem.In addition,the existence and uniform asymptotic stability of almost periodic solutions of the system are analyzed by assuming that all parameters in the model are almost periodic in time.Finally,the theoretical derivation is verified by a numerical simulation.展开更多
The project of Xiaoxihu Yellow River Bridge in Lanzhou is chosen as partial cable-stayed bridge. To get the shear lag effect and anti-earthquake performance of the actual bridge under various loading conditions, organ...The project of Xiaoxihu Yellow River Bridge in Lanzhou is chosen as partial cable-stayed bridge. To get the shear lag effect and anti-earthquake performance of the actual bridge under various loading conditions, organic glass scaled model was adopted to have an experiment and a theory research at one time. The experiment result is the basically same as the theory calculation which proves the FEA method can well calculate shear lag effect and dynamical performance. As a result, because the bridge is located in a seismic area of 8 degree, an elasto-plastic seismic checking is performed by customized FEA program in this paper.展开更多
Based on Hamilton principle,the governing differential equations and the corresponding boundary conditions of steel-concrete composite box girder with consideration of the shear lag effect meeting self equilibrated st...Based on Hamilton principle,the governing differential equations and the corresponding boundary conditions of steel-concrete composite box girder with consideration of the shear lag effect meeting self equilibrated stress,shear deformation,slip,as well as rotational inertia were induced.Therefore,natural frequency equations were obtained for the boundary types,such as simple support,cantilever,continuous girder and fixed support at two ends.The ANSYS finite element solutions were compared with the analytical solutions by calculation examples and the validity of the proposed approach was verified,which also shows the correctness of longitudinal warping displacement functions.Some meaningful conclusions for engineering design were obtained.The decrease extent of each order natural frequency of the steel-concrete composite box-girder is great under action of the shear lag effect.The shear-lag effect of steel-concrete composite box girder increases when frequency order rises,and increases while span-width ratio decreases.The proposed approach provides theoretical basis for further research of free vibration characteristics of steel-concrete composite box-girder.展开更多
The precedence effect is a prerequisite for faithful sound localization in a complex auditory environment, and is a physiological phenomenon in which the auditory system selectively suppresses the directional informat...The precedence effect is a prerequisite for faithful sound localization in a complex auditory environment, and is a physiological phenomenon in which the auditory system selectively suppresses the directional information from echoes. Here we investigated how neurons in the inferior colliculus respond to the paired sounds that produce precedence-effect illusions, and whether their firing behavior can be modulated through inhibition with gamma-aminobutyric acid (GABA). We recorded extracellularly from 36 neurons in rat inferior colliculus under three conditions: no injection, injection with saline, and injection with gamma-aminobutyric acid. The paired sounds that produced precedence effects were two identical 4-ms noise bursts, which were delivered contralaterally or ipsilaterally to the recording site. The normalized neural responses were measured as a function of different inter-stimulus delays and half-maximal interstimulus delays were acquired. Neuronal responses to the lagging sounds were weak when the inter-stimulus delay was short, but increased gradually as the delay was lengthened. Saline injection produced no changes in neural responses, but after local gamma-arninobutyric acid application, responses to the lagging stimulus were suppressed. Application of gamma-aminobutyric acid affected the normalized response to lagging sounds, independently of whether they or the paired sounds were contralateral or ipsilateral to the recording site. These observations suggest that local inhibition by gamma-aminobutyric acid in the rat inferior colliculus shapes the neural responses to lagging sounds, and modulates the precedence effect.展开更多
With the advancement of urbanization,the urban heat island effect and ozone pollution have become hot issues in urban research.The urban heat island effect can impact ozone conversion,but its mechanism of action is un...With the advancement of urbanization,the urban heat island effect and ozone pollution have become hot issues in urban research.The urban heat island effect can impact ozone conversion,but its mechanism of action is unclear.In this study,the effects of the urban heat island effect on ozone concentration in Chengdu City,China,were investigated by comparing the ozone concentration under different heat island levels with ozone data from March 2020 to February 2021 and the temperature and wind field data of ERA5-Land during the same period.The results showed that:1)regarding the distribution characteristics,the ozone concentration in Chengdu presented a‘high in summer and low in winter’distribution.The ozone concentration in summer(189.54µg/m^(3))was nearly twice that in winter(91.99µg/m^(3)),and the ozone diurnal variation presented a‘single peak and single valley’distribution,with a peak at 16:00.2)For the characteristics of the heat island effect,the heat island intensity in Chengdu was obviously higher in spring than in other seasons,and the diurnal variation showed a‘single peak and single valley’distribution,with the peak and trough values appearing at 9:00 and 17:00,respectively.Spatially,the eastern part of Chengdu was a heat island,while the western and northwestern parts were mostly cold island.3)The correlation analysis between heat island intensity and ozone concentration showed a significant positive correlation but with a 7–8 h time lag.Ambient air temperature was not the main factor affecting ozone concentration.The heat island effect impacts the ozone concentration in two ways:changing the local heat budget to promote ozone generation and forming local urban wind,which promotes ozone diffusion or accumulation and forms different areas of low and high ozone values.展开更多
The water level in a deep well instantly responds to the earth’s tide and atmospheric pressure, and varies accordingly, not only in terms of amplitude but also in the phase lag. Therefore, phase lag correction is use...The water level in a deep well instantly responds to the earth’s tide and atmospheric pressure, and varies accordingly, not only in terms of amplitude but also in the phase lag. Therefore, phase lag correction is used in analyzing digital groundwater observation data in eastern China. Calculation results presented by the authors in this paper show that the correction method is effective in the identification of anomalous changes for short-term seismic precursors. The correction method can also be applied to the processing of observed deformation and tilt data.展开更多
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences[grant numbers XDA23090102]the National Natural Science Foundation of China[grant numbers 42175078 and 42075040]+1 种基金the Health Meteorological Project of Hebei Province[grant number FW202150]the National Key Research and Development Program of China[grant number 2018YFA0606203].
基金supported by the National Natural Science Foundation of China(Grant No.51709021)the Open Foundation of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering(Grant No.2016491111)
文摘Affected by external environmental factors and evolution of dam performance, dam seepage behavior shows nonlinear time-varying characteristics. In this study, to predict and evaluate the long-term development trend and short-term fluctuation of the dam seepage behavior, two monitoring models were developed, one for the base flow effect and one for daily variation of dam seepage elements. In the first model, to avoid the influence of the time lag effect on the evaluation of seepage variation with the time effect component of seepage elements, the base values of the seepage element and the reservoir water level were extracted using the wavelet multi-resolution analysis method, and the time effect component was separated by the established base flow effect monitoring model. For the development of the daily variation monitoring model for dam seepage elements, all the previous factors, of which the measured time series prior to the dam seepage element monitoring time may have certain influence on the monitored results, were considered. Those factors that were positively correlated with the analyzed seepage element were initially considered to be the support vector machine(SVM) model input factors, and then the SVM kernel function-based sensitivity analysis was performed to optimize the input factor set and establish the optimized daily variation SVM model. The efficiency and rationality of the two models were verified by case studies of the water level of two piezometric tubes buried under the slope of a concrete gravity dam.Sensitivity analysis of the optimized SVM model shows that the influences of the daily variation of the upstream reservoir water level and rainfall on the daily variation of piezometric tube water level are processes subject to normal distribution.
基金Projects(51078355,50938008) supported by the National Natural Science Foundation of ChinaProject(CX2011B093) supported by the Doctoral Candidate Research Innovation Program of Hunan Province, ChinaProject(20117Q008) supported by the Basic Scientific Research Funds for Central Universities of China
文摘Considering three longitudinal displacement functions and uniform axial displacement functions for shear lag effect and uniform axial deformation of thin-walled box girder with varying depths,a simple and efficient method with high precision to analyze the shear lag effect of thin-walled box girders was proposed.The governing differential equations and boundary conditions of the box girder under lateral loading were derived based on the energy-variational method,and closed-form solutions to stress and deflection corresponding to lateral loading were obtained.Analysis and calculations were carried out with respect to a trapezoidal box girder under concentrated loading or uniform loading and a rectangular box girder under concentrated loading.The analytical results were compared with numerical solutions derived according to the high order finite strip element method and the experimental results.The investigation shows that the closed-form solution is in good agreement with the numerical solutions derived according to the high order finite strip method and the experimental results,and has good stability.Because of the shear lag effect,the stress in cross-section centroid is no longer zero,thus it is not reasonable enough to assume that the strain in cross-section centroid is zero without considering uniform axial deformation.
基金Projects(51078355,50938008) supported by the National Natural Science Foundation of ChinaProject(094801020) supported by the Academic Scholarship for Doctoral Candidates of the Ministry of Education,China+1 种基金Project(CX2011B093) supported by the Doctoral Candidate Research Innovation Project of Hunan Province, ChinaProject(20117Q008) supported by the Central University Basic Scientific Research Business Expenses Special Fund of China
文摘Based on the consideration of longitudinal warp caused by shear lag effects on concrete slabs and bottom plates of steel beams,shear deformation of steel beams and interface slip between steel beams and concrete slabs,the governing differential equations and boundary conditions of the steel-concrete composite box beams under lateral loading were derived using energy-variational method.The closed-form solutions for stress,deflection and slip of box beams under lateral loading were obtained,and the comparison of the analytical results and the experimental results for steel-concrete composite box beams under concentrated loading or uniform loading verifies the closed-form solution.The investigation of the parameters of load effects on composite box beams shows that:1) Slip stiffness has considerable impact on mid-span deflection and end slip when it is comparatively small;the mid-span deflection and end slip decrease significantly with the increase of slip stiffness,but when the slip stiffness reaches a certain value,its impact on mid-span deflection and end slip decreases to be negligible.2) The shear deformation has certain influence on mid-span deflection,and the larger the load is,the greater the influence is.3) The impact of shear deformation on end slip can be neglected.4) The strain of bottom plate of steel beam decreases with the increase of slip stiffness,while the shear lag effect becomes more significant.
基金Projects 2008ZX05009-004 supported by the National Key Sci-Tech Major Special Item2006CB705805 by the National Basic Research Program of Chinasupported by the National Basic Research Program of China and "enhanced oil recovery basic theory for low permeability reservoirs" under grant 2002CCA00700
文摘In order to study the effect of time lag and stress loading rates on rock deformation,the conventional stepped stress loading mode was changed into a continuous mode to investigate the effect of effective pressure on permeability and porosity.The time lag effect of rock deformation illustrating the relationship between changes in permeability and steady time was studied.Permeability reduction ratios were measured under different stress loading rates which were achieved by different pump rate settings.The results show that permeability and porosity gradually decrease with increases in effective pressure.Permeability at high effective pressure attains stability quickly.Steady times at low effective pressure are very long.Reduction in permeability at lower stress loading rates is small,while,in contrast,it is large at high stress loading rates.
文摘In order to resolve the traffic congestion problem, many cable-stayed bridges are designed with a large width to span ratio. This results in significant shear lag effect to cause nonuniform stress distribution along the flanges of the beam of bridge. This paper reports study on the shear lag effect of the Lanzhou Xiaoxihu Yellow River Bridge. A 3D finite element model of the bridge was developed and finite element analysis (FEA) was done to obtain the theoretical results. To evaluate the theoretical results, a scaled model was made to conduct static test in laboratory. The experiment results accorded with the results obtained by FEA. It is proved that FEA is an effective method to predict shear lag effect of bridges of this type.
基金supported by the National Natural ScienceFoundation of China(11401002,11771001)the Natural Science Foundation of Anhui Province(2008085MA02)+3 种基金the Natural Science Fund for Colleges and Universities in Anhui Province(KJ2018A0029)the Teaching Research Project of Anhui University(ZLTS2016065)the Quality engineering project of colleges and universities in Anhui Province(2020jyxm0103)the Science Foundation of Anhui Province Universities(KJ2019A005)。
文摘This paper studies a kind of non-autonomous respiratory disease model with a lag effect.First of all,the permanence and extinction of the system are discussed by using the comparison principle and some differential inequality techniques.Second,it assumes that all coefficients of the system are periodic.The existence of positive periodic solutions of the system is proven,based on the continuation theorem in coincidence with the degree theory of Mawhin and Gaines.In the meantime,the global attractivity of positive periodic solutions of the system is obtained by constructing an appropriate Lyapunov functional and using the Razumikin theorem.In addition,the existence and uniform asymptotic stability of almost periodic solutions of the system are analyzed by assuming that all parameters in the model are almost periodic in time.Finally,the theoretical derivation is verified by a numerical simulation.
文摘The project of Xiaoxihu Yellow River Bridge in Lanzhou is chosen as partial cable-stayed bridge. To get the shear lag effect and anti-earthquake performance of the actual bridge under various loading conditions, organic glass scaled model was adopted to have an experiment and a theory research at one time. The experiment result is the basically same as the theory calculation which proves the FEA method can well calculate shear lag effect and dynamical performance. As a result, because the bridge is located in a seismic area of 8 degree, an elasto-plastic seismic checking is performed by customized FEA program in this paper.
基金Projects(51078355,50938008)supported by the National Natural Science Foundation of ChinaProject(094801020)supported by the Academic Scholarship for Doctoral Candidates of the Ministry of Education,China+1 种基金Project(CX2011B093)supported by the Doctoral Candidate Research Innovation Project of Hunan Province,ChinaProject(20117Q008)supported by the Central University Basic Scientific Research Business Expenses Special Fund of China
文摘Based on Hamilton principle,the governing differential equations and the corresponding boundary conditions of steel-concrete composite box girder with consideration of the shear lag effect meeting self equilibrated stress,shear deformation,slip,as well as rotational inertia were induced.Therefore,natural frequency equations were obtained for the boundary types,such as simple support,cantilever,continuous girder and fixed support at two ends.The ANSYS finite element solutions were compared with the analytical solutions by calculation examples and the validity of the proposed approach was verified,which also shows the correctness of longitudinal warping displacement functions.Some meaningful conclusions for engineering design were obtained.The decrease extent of each order natural frequency of the steel-concrete composite box-girder is great under action of the shear lag effect.The shear-lag effect of steel-concrete composite box girder increases when frequency order rises,and increases while span-width ratio decreases.The proposed approach provides theoretical basis for further research of free vibration characteristics of steel-concrete composite box-girder.
基金supported by the National Natural Science Foundation of China,No.81271090 and the Beijing Natural Science Foundation,No.7112055
文摘The precedence effect is a prerequisite for faithful sound localization in a complex auditory environment, and is a physiological phenomenon in which the auditory system selectively suppresses the directional information from echoes. Here we investigated how neurons in the inferior colliculus respond to the paired sounds that produce precedence-effect illusions, and whether their firing behavior can be modulated through inhibition with gamma-aminobutyric acid (GABA). We recorded extracellularly from 36 neurons in rat inferior colliculus under three conditions: no injection, injection with saline, and injection with gamma-aminobutyric acid. The paired sounds that produced precedence effects were two identical 4-ms noise bursts, which were delivered contralaterally or ipsilaterally to the recording site. The normalized neural responses were measured as a function of different inter-stimulus delays and half-maximal interstimulus delays were acquired. Neuronal responses to the lagging sounds were weak when the inter-stimulus delay was short, but increased gradually as the delay was lengthened. Saline injection produced no changes in neural responses, but after local gamma-arninobutyric acid application, responses to the lagging stimulus were suppressed. Application of gamma-aminobutyric acid affected the normalized response to lagging sounds, independently of whether they or the paired sounds were contralateral or ipsilateral to the recording site. These observations suggest that local inhibition by gamma-aminobutyric acid in the rat inferior colliculus shapes the neural responses to lagging sounds, and modulates the precedence effect.
基金Under the auspices of the National Science Foundation of Sichuan Province(No.2022NSFSC1006)Science and Technology Innovation Capability Improvement Plan Project of Chengdu University of Information Technology in 2022(No.KYQN202215)the National Science Foundation of China(No.41505122)。
文摘With the advancement of urbanization,the urban heat island effect and ozone pollution have become hot issues in urban research.The urban heat island effect can impact ozone conversion,but its mechanism of action is unclear.In this study,the effects of the urban heat island effect on ozone concentration in Chengdu City,China,were investigated by comparing the ozone concentration under different heat island levels with ozone data from March 2020 to February 2021 and the temperature and wind field data of ERA5-Land during the same period.The results showed that:1)regarding the distribution characteristics,the ozone concentration in Chengdu presented a‘high in summer and low in winter’distribution.The ozone concentration in summer(189.54µg/m^(3))was nearly twice that in winter(91.99µg/m^(3)),and the ozone diurnal variation presented a‘single peak and single valley’distribution,with a peak at 16:00.2)For the characteristics of the heat island effect,the heat island intensity in Chengdu was obviously higher in spring than in other seasons,and the diurnal variation showed a‘single peak and single valley’distribution,with the peak and trough values appearing at 9:00 and 17:00,respectively.Spatially,the eastern part of Chengdu was a heat island,while the western and northwestern parts were mostly cold island.3)The correlation analysis between heat island intensity and ozone concentration showed a significant positive correlation but with a 7–8 h time lag.Ambient air temperature was not the main factor affecting ozone concentration.The heat island effect impacts the ozone concentration in two ways:changing the local heat budget to promote ozone generation and forming local urban wind,which promotes ozone diffusion or accumulation and forms different areas of low and high ozone values.
基金This project was sponsored by the Science and Technology Development Program(031060107) ,Shandong Province .
文摘The water level in a deep well instantly responds to the earth’s tide and atmospheric pressure, and varies accordingly, not only in terms of amplitude but also in the phase lag. Therefore, phase lag correction is used in analyzing digital groundwater observation data in eastern China. Calculation results presented by the authors in this paper show that the correction method is effective in the identification of anomalous changes for short-term seismic precursors. The correction method can also be applied to the processing of observed deformation and tilt data.