The energy method, which estimates the effective permeability of composite material is proposed. We approximate the effective static magnetic permeability by energy method and Maxwell-Garnett method for spherical part...The energy method, which estimates the effective permeability of composite material is proposed. We approximate the effective static magnetic permeability by energy method and Maxwell-Garnett method for spherical particles dispersing system. Considering the effect of the interface layer between the medium and the particle, we study the nanoparticles embedded in a medium exactly. The interface layer property plays a significant factor for the effective permeability of the composite material in which nano-sized particles embedded.展开更多
This study developed the equipment for thermo-fluid–solid coupling of methane-containing coal, and investigated the seepage character of loaded coal under different working conditions. Regarding the effective pressur...This study developed the equipment for thermo-fluid–solid coupling of methane-containing coal, and investigated the seepage character of loaded coal under different working conditions. Regarding the effective pressure as a variable, the variation characteristics of the gas permeability of loaded methane-containing coal has been studied under the conditions of different confining pressures and pore pressures. The qualitative and quantitative relationship between effective stress and permeability of loaded methane-containing coal has been established, considering the adsorption of deformation, amount of pore gas compression and temperature variation. The results show that the permeability of coal samples decreases along with the increasing effective stress. Based on the Darcy law, the correlation equation between the effective stress and permeability coefficient of coal seam has been established by combining the permeability coefficient of loaded coal and effective stress. On the basis of experimental data, this equation is used for calculation, and the results are in accordance with the measured gas permeability coefficient of coal seam. In conclusion, this method can be accurate and convenient to determine the gas permeability coefficient of coal seam, and provide evidence for forecasting that of the deep coal seam.展开更多
Tumor-targeting is becoming more and more important for cancer chemotherapy. Though many molecular-target drugs have been developed in the past two decades which shed some light on targeted tumor therapy,clinical resu...Tumor-targeting is becoming more and more important for cancer chemotherapy. Though many molecular-target drugs have been developed in the past two decades which shed some light on targeted tumor therapy,clinical results of those molecular-target drugs are not so encouraging especially for solid tumors, problems mostly relating to the heterogeneity and mutations of target molecules in human solid tumors. More general tumor-targeting strategy is thus anticipated. In this regard, the enhanced permeability and retention(EPR) effect which is a unique phenomenon of solid tumors based on the anatomical and pathophysiological nature of tumor blood vessels, is receiving more and more attentions. This EPR effect now served as a standard for tumor-targeted macromolecular anticancer therapy, namely nanomedicine. Many nanoplatforms have been developed as targeted drug delivery systems, including liposome, polymeric micelles, polymer conjugate, nanoparticles. Ample macromolecular drugs are now approved for clinical use or in clinical stage development, all of which by taking advantage of EPR effect, show superior in vivo pharmacokinetics and remarkable tumor selectivity, resulting in improved antitumor effects with less adverse effects. We thus believe EPR-based nanomedicine will be a solution for cancer in the future, whereas further consideration of factors involved in EPR effect and strategies to augment/improve EPR effect are warranted.展开更多
We investigated the variation of permeability spectra and relaxation frequency in Co-based amorphous ribbon annealed by pulsed Nd:YAG laser at various annealing energy Ea. The complex permeability spectra varies sensi...We investigated the variation of permeability spectra and relaxation frequency in Co-based amorphous ribbon annealed by pulsed Nd:YAG laser at various annealing energy Ea. The complex permeability spectra varies sensitively with the annealing energy, where the spectra could be decomposed into two contributions from domain wall motion,μdw(f) and rotational magnetization μrot(f) by analyzing the measured spectra as a function of driving ac field amplitude. The magnitude of μdw(f) and μrot(f) in dc limit shows maximum at Ea = 176 mJ. The maximum relaxation frequency for rotational magnetization, determined by μ'(f) curve, is about 700 kHz at Ea=62 mJ but that for wall motion is about 26 kHz at 230 mJ. These variations reflect the increase of magnetic softness and microstructural change by the annealing.展开更多
The physical properties of the rock units associated with the Rio Bonito Formation are presented in this study with the focus on modelling reservoir quality based on petrophysics-derived parameters to evaluate CO_(2)s...The physical properties of the rock units associated with the Rio Bonito Formation are presented in this study with the focus on modelling reservoir quality based on petrophysics-derived parameters to evaluate CO_(2)storage potentials.It involves the modelling of the reservoir depths,thicknesses,flow zone indicators(FZI),and effective permeability(Keff)and presenting the CO_(2)storage efficiency factors peculiar to the rock units of the study location.Research results presented by this study for the stated objectives are not quite common in the region.Keff values range from 200 mD to higher than 2000 mD,and FZI values are generally above 1.0 mm and up to 13.0 mm within the portions covered by the drilled wells.The sandstone units recorded are up to 20 m thick in some cases.The Keff and FZI models indicate the sandstone reservoirs as permeable units to support the injection and circulation of CO_(2)within the potential reservoir units of the Rio Bonio Formation across São Paulo State.Apart from some points in the southeastern part of the study location,where the Rio Bonito are delineated at depths less than 800 m(minimum CO_(2)storage depth based on best practices),other portions are deeper,ranging from 950 m to 3500 m.Thin-bedded layers will affect the integrity of the rocks as CO_(2)storage tanks or reservoir seals/traps/overburden within the region.Sandstone bed thicknesses are up to 20 m in some cases.However,hybrid CO_(2)reservoir units are feasible,especially in portions where thin siltstone layers are sandwiched between sandstone units to provide considerable thicknesses based on CO_(2)storage standards.The current study shows that useable areas considering reservoir thickness,depth,and other physical qualities will significantly control the CO_(2)storage efficiency of the study location.Further studies featuring a detailed geophysical exploration of the site to confirm the availability and saturations of preexisting fluid(hydrocarbon and water)are encouraged to boost CO_(2)storage in the region.The related research-based results,as mentioned above,may be combined with the results of this research to determine the area's potentials for CO_(2)storage or hydrocarbon production with CO_(2)storage options.展开更多
Fracture network connectivity and aperture (or conductivity) distribution are two crucial features controlling flow behavior of naturally fractured reservoirs. The effect of connectivity on flow properties is well d...Fracture network connectivity and aperture (or conductivity) distribution are two crucial features controlling flow behavior of naturally fractured reservoirs. The effect of connectivity on flow properties is well documented. In this paper, however, we focus here on the influence of fracture aperture distribution. We model a two dimensional fractured reservoir in which the matrix is impermeable and the fractures are well connected. The fractures obey a power-law length distribution, as observed in natural fracture networks. For the aperture distribution, since the information from subsurface fracture networks is limited, we test a number of cases: log-normal distributions (from narrow to broad), power-law distributions (from narrow to broad), and one case where the aperture is pro- portional to the fracture length. We find that even a well- connected fracture network can behave like a much sparser network when the aperture distribution is broad enough (c~ 〈 2 for power-law aperture distributions and σ ≥ 0.4 for log-normal aperture distributions). Specifically, most fractures can be eliminated leaving the remaining dominant sub-network with 90% of the permeability of the original fracture network. We determine how broad the aperture distribution must be to approach this behavior and the dependence of the dominant sub-network on the parameters of the aperture distribution. We also explore whether one can identify the dominant sub-network without doing flow calculations.展开更多
Three new Fe-based microcrystalline alloys,i.e.,Fe_(73.1)Cu_(1.2)Nb_(3.2)Si_(12 5)B_(10), Fe_(73)Cu_1Nb_(1.5)Mo_2Si_(12.5)B_(10) and Fe_(73)Cu_1Zr_3C_(0.5)Mo_Si_(12.5)B_(10),were developed with su- perior magnetic pro...Three new Fe-based microcrystalline alloys,i.e.,Fe_(73.1)Cu_(1.2)Nb_(3.2)Si_(12 5)B_(10), Fe_(73)Cu_1Nb_(1.5)Mo_2Si_(12.5)B_(10) and Fe_(73)Cu_1Zr_3C_(0.5)Mo_Si_(12.5)B_(10),were developed with su- perior magnetic properties.e.g.,high relative initial permeability of μ_i^15×10~4,low coercivity of H_c1.0A/m,high effective permeability and low core losses in a consid- crable wide frequency range and high pulse-magnetic permeability under narrow pulse. The optimum value of relative effective permeability,μ_5~1 is 16×10~4 under condition of f=1 kHz and H_m=0.4 A/m.The optimum values of core loss reach 57.9 30.2 and 68 W/kg under condition of f=50.100.100 KHz and B_m=0.5,0.2,0.3 T,respectively. These three alloys have superior stability of magnetic properties.Initial permeability may be not changed during heating at 130℃ up to 216 h.The main crystalline phase is ordered phase Fe_((75)+y)Si_((25)-y) which is ultrafine particles of average size 10—20 nm.展开更多
Enhanced permeation and retention(EPR) targeting effect of rhodamine B labeled PEG-b-P(LA-co-DHP) [PEG:poly(ethylene glycol);LA:L-lactide;DHP:2,2-dihydroxylmethyl-propylene carbonate] micelles(RhB-micelles)...Enhanced permeation and retention(EPR) targeting effect of rhodamine B labeled PEG-b-P(LA-co-DHP) [PEG:poly(ethylene glycol);LA:L-lactide;DHP:2,2-dihydroxylmethyl-propylene carbonate] micelles(RhB-micelles) was observed in H22 liver cancer bearing mice.The RhB-micelles were prepared by conjugating rhodamine B with the DHP units of amphiphilic block copolymer PEG-b-P(LA-co-DHP) followed by subsequent self-assembling of the conjugate.The parent copolymer PEG-b-P(LA-co-DHP) was synthesized by ring-opening copolymerization of LA and DHP with PEG as macroinitiator and diethyl zinc(ZnEt2) as catalyst.The micelles have a spherical shape and the average diameter is ca.50 nm by TEM(transmission electron microscope) or 80 nm by DLS(dynamic light scattering).Their in vitro cell uptake experiment by CLSM(confocal laser scanning microscopy) and flow cytometry showed preferential internalization of micelles by MCF-7 human breast cancer cells to free RhB.The in vivo tests by live animal imaging and ex vivo excised organ imaging showed that after vena tail injection,free RhB molecules were distributed in the whole body through the circulation system and then gradually metabolized and excreted and there was no preferential partition in tumor bed from the beginning to the end.But the RhB-micelles were preferentially distributed to the tumor bed so that their concentration(fluorescent intensity) in tumor bed got the level of the liver at a certain time point between 1 and 6 h and reached a maximum relative intensity at around 12 h,indicating an obvious EPR effect of RhB-micelles in H22 liver cancer.展开更多
The enhanced permeability retention(EPR)effect based nanomedicine has been widely used for tumor targeting during the past decades.Here we unexpectedly observed the similar"EPR effect"at the site of iniury.W...The enhanced permeability retention(EPR)effect based nanomedicine has been widely used for tumor targeting during the past decades.Here we unexpectedly observed the similar"EPR effect"at the site of iniury.We found that the temporary dilated and leaky blood vessels caused by the potent vasodilator histamine in response to injury allowed the injected nanoparticles to pass through the vasculature and reached the injured tissue.Our finding shows the potential underline mechanism of"EPR effect"at the injured site.By loading with antibiotics,we further demonstrated a new strategy for prevention of infection at the site of injury.展开更多
The CO_2 permeability of fractured coal is of great significance to both coalbed gas extraction and CO_2 storage in coal seams, but the effects of high confining pressure, high injection pressure and elevated temperat...The CO_2 permeability of fractured coal is of great significance to both coalbed gas extraction and CO_2 storage in coal seams, but the effects of high confining pressure, high injection pressure and elevated temperature on the CO_2 permeability of fractured coal with different fracture extents have not been investigated thoroughly. In this paper, the CO_2 permeability of fractured coals sampled from a Pingdingshan coal mine in China and artificially fractured to a certain extent is investigated through undrained triaxial tests. The CO_2 permeability is measured under the confining pressure with a range of 10–25 MPa, injection pressure with a range of 6–12 MPa and elevated temperature with a range of 25–70°C. A mechanistic model is then proposed to characterize the CO_2 permeability of the fractured coals. The effects of thermal expansion, temperature-induced reduction of adsorption capacity, and thermal micro-cracking on the CO_2 permeability are explored. The test results show that the CO_2 permeability of naturally fractured coal saliently increases with increasing injection pressure. The increase of confining pressure reduces the permeability of both naturally fractured coal and secondarily fractured coal. It is also observed that initial fracturing by external loads can enhance the permeability, but further fracturing reduces the permeability. The CO_2 permeability decreases with the elevation of temperature if the temperature is lower than 44°C, but the permeability increases with temperature once the temperature is beyond 44°C. The mechanistic model well describes these compaction mechanisms induced by confining pressure, injection pressure and the complex effects induced by elevated temperature.展开更多
Cancer nanomedicine is defined as the application of nanotechnology and nanomaterials for the formulation of cancer therapeutics that can overcome the impediments and restrictions of traditional chemotherapeutics.Mult...Cancer nanomedicine is defined as the application of nanotechnology and nanomaterials for the formulation of cancer therapeutics that can overcome the impediments and restrictions of traditional chemotherapeutics.Multidrug resistance(MDR)in cancer cells can be defined as a decrease or abrogation in the efficacy of anticancer drugs that have different molecular structures and mechanisms of action and is one of the primary causes of therapeutic failure.There have been successes in the development of cancer nanomedicine to overcome MDR;however,relatively few of these formulations have been approved by the United States Food and Drug Administration for the treatment of cancer.This is primarily due to the paucity of knowledge about nanotechnology and the fundamental biology of cancer cells.Here,we discuss the advances,types of nanomedicines,and the challenges regarding the translation of in vitro to in vivo results and their relevance to effective therapies.展开更多
Numerical simulation of two-phase flow in fractured karst reservoirs is still a challenging issue.The triple-porosity model is the major approach up to now.However,the triple-continuum assumption in this model is unac...Numerical simulation of two-phase flow in fractured karst reservoirs is still a challenging issue.The triple-porosity model is the major approach up to now.However,the triple-continuum assumption in this model is unacceptable for many cases.In the present work,an efficient numerical model has been developed for immiscible two-phase flowin fractured karst reservoirs based on the idea of equivalent continuum representation.First,based on the discrete fracture-vug model and homogenization theory,the effective absolute permeability tensors for each grid blocks are calculated.And then an analytical procedure to obtain a pseudo relative permeability curves for a grid block containing fractures and cavities has been successfully implemented.Next,a full-tensor simulator has been designed based on a hybrid numerical method(combining mixed finite element method and finite volume method).A simple fracture system has been used to demonstrate the validity of our method.At last,we have used the fracture and cavity statistics data fromTAHE outcrops in west China,effective permeability values and other parameters from our code,and an equivalent continuum simulator to calculate the water flooding profiles for more realistic systems.展开更多
When pressure in gas reservoirs fall below the dew point,condensate banking occurs around the wellbore which alters the fluid flow behavior.The state of the knowledge on this flow behavior is yet not fully-developed;w...When pressure in gas reservoirs fall below the dew point,condensate banking occurs around the wellbore which alters the fluid flow behavior.The state of the knowledge on this flow behavior is yet not fully-developed;which leads to severe problems in field.In this study,the Al-Hussainy,Ramey,and Crawford Solution Technique has been modified to accurately resemble the real gas flow behavior for this condition.First,a primary investigation was conducted to observe the severity of the problem in three condensate banked reservoirs.Then this study involved Constant Composition Expansion tests for determining the dew point,Prode Properties software for modeling the reservoir fluid properties,Flowing Material Balance(or Dynamic P/Z Material Balance)for identifying the pressure distribution of the selected reservoirs.The real field data along with the determined(analytical,computational,and experimental)data were incorporated to check the validity of the models.The modification proposes a Dimensionless Correction Factor(CD)for any condensate banked reservoir and identifies parameters such as the Perforation Factor(Pf)and Heterogeneity Factor(n).It is found that the Modified Al-Hussainy,Ramey,and Crawford Solution Technique successfully models the actual flow characteristics of the stated condition.展开更多
Due to their many advantageous properties,nanomaterials(NMs)have been utilized in diverse consumer goods,industrial products,and for therapeutic purposes.This situation leads to a constant risk of exposure and uptake ...Due to their many advantageous properties,nanomaterials(NMs)have been utilized in diverse consumer goods,industrial products,and for therapeutic purposes.This situation leads to a constant risk of exposure and uptake by the human body,which are highly dependent on nanomaterial size.Consequently,an improved understanding of the interactions between different sizes of nanomaterials and biological systems is needed to design safer and more clinically relevant nano systems.We discuss the sizedependent effects of nanomaterials in living organisms.Upon entry into biological systems,nanomaterials can translocate biological barriers,distribute to various tissues and elicit different toxic effects on organs,based on their size and location.The association of nanomaterial size with physiological structures within organs determines the site of accumulation of nanoparticles.In general,nanomaterials smaller than 20 nm tend to accumulate in the kidney while nanomaterials between 20 and 100 nm preferentially deposit in the liver.After accumulating in organs,nanomaterials can induce inflammation,damage structural integrity and ultimately result in organ dysfunction,which helps better understand the size-dependent dynamic processes and toxicity of nanomaterials in organisms.The enhanced permeability and retention effect of nanomaterials and the utility of this phenomenon in tumor therapy are also highlighted.展开更多
The field of nanomedicine in controlled drug delivery systems, especially for tumor targeting, has tremendously progressed over the past decades because of its plentiful benefits, such as biocompatibility, stability i...The field of nanomedicine in controlled drug delivery systems, especially for tumor targeting, has tremendously progressed over the past decades because of its plentiful benefits, such as biocompatibility, stability in blood circulation, and ability to reduce side effects. Although a large number of relevant papers are published every year, few nanodrugs are available for clinical treatment. The present review aimed to explore the barriers in nanomedicine delivery and tumor targeting. Rational design of nanomedicine should consider not only tumor heterogeneity, in vivo metabolism, and physicochemical properties, but also more efficient innovations in particulate formulations for clinical application.展开更多
Nanoparticle-mediated targeted delivery of drugs might significantly reduce the dosage and optimize their release properties,increase specificity and bioavailability,improve shelf life,and reduce toxicity.Some nanodru...Nanoparticle-mediated targeted delivery of drugs might significantly reduce the dosage and optimize their release properties,increase specificity and bioavailability,improve shelf life,and reduce toxicity.Some nanodrugs are able to overcome the blood-brain barrier that is an obstacle to treatment of brain tumors.Vessels in tumors have abnormal architecture and are highly permeable;moreover,tumors also have poor lymphatic drainage,allowing for accumulation of macromolecules greater than approximately 40 kDa within the tumor microenvironment.Nanoparticles exploit this feature,known as the enhanced permeability and retention effect,to target solid tumors.Active targeting,i.e.surface modification of nanoparticles,is a way to decrease uptake in normal tissue and increase accumulation in a tumor,and it usually involves targeting surface membrane proteins that are upregulated in cancer cells.The targeting molecules are typically antibodies or their fragments;aptamers;oligopeptides or small molecules.There are currently several FDA-approved nanomedicines,but none approved for brain tumor therapy.This review,based both on the study of literature and on the authors own experimental work describes a comprehensive overview of preclinical and clinical research of nanodrugs in therapy of brain tumors.展开更多
基金Supported by National Natural Science Foundation of Yunnan province under Grant No.2014FB141National Natural Science Foundation under Grant No.1121403 of China
文摘The energy method, which estimates the effective permeability of composite material is proposed. We approximate the effective static magnetic permeability by energy method and Maxwell-Garnett method for spherical particles dispersing system. Considering the effect of the interface layer between the medium and the particle, we study the nanoparticles embedded in a medium exactly. The interface layer property plays a significant factor for the effective permeability of the composite material in which nano-sized particles embedded.
基金supported by the National Basic Research Program of China (No. 2012CB723103)the Ministry of Education Innovation Team of China (No. IRT1235)+2 种基金the State Key Laboratory Cultivation Base for Gas Geology and Gas Control of Henan Polytechnic University of China (No. WS2012A01)the Provincial Open Laboratory Fund of Minal Materials Key disciplines of China (No. MEM13-10)China Postdoctoral Science Foundation (No. 2014M552003)
文摘This study developed the equipment for thermo-fluid–solid coupling of methane-containing coal, and investigated the seepage character of loaded coal under different working conditions. Regarding the effective pressure as a variable, the variation characteristics of the gas permeability of loaded methane-containing coal has been studied under the conditions of different confining pressures and pore pressures. The qualitative and quantitative relationship between effective stress and permeability of loaded methane-containing coal has been established, considering the adsorption of deformation, amount of pore gas compression and temperature variation. The results show that the permeability of coal samples decreases along with the increasing effective stress. Based on the Darcy law, the correlation equation between the effective stress and permeability coefficient of coal seam has been established by combining the permeability coefficient of loaded coal and effective stress. On the basis of experimental data, this equation is used for calculation, and the results are in accordance with the measured gas permeability coefficient of coal seam. In conclusion, this method can be accurate and convenient to determine the gas permeability coefficient of coal seam, and provide evidence for forecasting that of the deep coal seam.
文摘Tumor-targeting is becoming more and more important for cancer chemotherapy. Though many molecular-target drugs have been developed in the past two decades which shed some light on targeted tumor therapy,clinical results of those molecular-target drugs are not so encouraging especially for solid tumors, problems mostly relating to the heterogeneity and mutations of target molecules in human solid tumors. More general tumor-targeting strategy is thus anticipated. In this regard, the enhanced permeability and retention(EPR) effect which is a unique phenomenon of solid tumors based on the anatomical and pathophysiological nature of tumor blood vessels, is receiving more and more attentions. This EPR effect now served as a standard for tumor-targeted macromolecular anticancer therapy, namely nanomedicine. Many nanoplatforms have been developed as targeted drug delivery systems, including liposome, polymeric micelles, polymer conjugate, nanoparticles. Ample macromolecular drugs are now approved for clinical use or in clinical stage development, all of which by taking advantage of EPR effect, show superior in vivo pharmacokinetics and remarkable tumor selectivity, resulting in improved antitumor effects with less adverse effects. We thus believe EPR-based nanomedicine will be a solution for cancer in the future, whereas further consideration of factors involved in EPR effect and strategies to augment/improve EPR effect are warranted.
文摘We investigated the variation of permeability spectra and relaxation frequency in Co-based amorphous ribbon annealed by pulsed Nd:YAG laser at various annealing energy Ea. The complex permeability spectra varies sensitively with the annealing energy, where the spectra could be decomposed into two contributions from domain wall motion,μdw(f) and rotational magnetization μrot(f) by analyzing the measured spectra as a function of driving ac field amplitude. The magnitude of μdw(f) and μrot(f) in dc limit shows maximum at Ea = 176 mJ. The maximum relaxation frequency for rotational magnetization, determined by μ'(f) curve, is about 700 kHz at Ea=62 mJ but that for wall motion is about 26 kHz at 230 mJ. These variations reflect the increase of magnetic softness and microstructural change by the annealing.
基金sponsored by Fundação de AmparoàPesquisa do Estado de São Paulo(FAPESP)(2014/50279-4,2020/15230-5,2021/06158-1)Shell Brasil.
文摘The physical properties of the rock units associated with the Rio Bonito Formation are presented in this study with the focus on modelling reservoir quality based on petrophysics-derived parameters to evaluate CO_(2)storage potentials.It involves the modelling of the reservoir depths,thicknesses,flow zone indicators(FZI),and effective permeability(Keff)and presenting the CO_(2)storage efficiency factors peculiar to the rock units of the study location.Research results presented by this study for the stated objectives are not quite common in the region.Keff values range from 200 mD to higher than 2000 mD,and FZI values are generally above 1.0 mm and up to 13.0 mm within the portions covered by the drilled wells.The sandstone units recorded are up to 20 m thick in some cases.The Keff and FZI models indicate the sandstone reservoirs as permeable units to support the injection and circulation of CO_(2)within the potential reservoir units of the Rio Bonio Formation across São Paulo State.Apart from some points in the southeastern part of the study location,where the Rio Bonito are delineated at depths less than 800 m(minimum CO_(2)storage depth based on best practices),other portions are deeper,ranging from 950 m to 3500 m.Thin-bedded layers will affect the integrity of the rocks as CO_(2)storage tanks or reservoir seals/traps/overburden within the region.Sandstone bed thicknesses are up to 20 m in some cases.However,hybrid CO_(2)reservoir units are feasible,especially in portions where thin siltstone layers are sandwiched between sandstone units to provide considerable thicknesses based on CO_(2)storage standards.The current study shows that useable areas considering reservoir thickness,depth,and other physical qualities will significantly control the CO_(2)storage efficiency of the study location.Further studies featuring a detailed geophysical exploration of the site to confirm the availability and saturations of preexisting fluid(hydrocarbon and water)are encouraged to boost CO_(2)storage in the region.The related research-based results,as mentioned above,may be combined with the results of this research to determine the area's potentials for CO_(2)storage or hydrocarbon production with CO_(2)storage options.
文摘Fracture network connectivity and aperture (or conductivity) distribution are two crucial features controlling flow behavior of naturally fractured reservoirs. The effect of connectivity on flow properties is well documented. In this paper, however, we focus here on the influence of fracture aperture distribution. We model a two dimensional fractured reservoir in which the matrix is impermeable and the fractures are well connected. The fractures obey a power-law length distribution, as observed in natural fracture networks. For the aperture distribution, since the information from subsurface fracture networks is limited, we test a number of cases: log-normal distributions (from narrow to broad), power-law distributions (from narrow to broad), and one case where the aperture is pro- portional to the fracture length. We find that even a well- connected fracture network can behave like a much sparser network when the aperture distribution is broad enough (c~ 〈 2 for power-law aperture distributions and σ ≥ 0.4 for log-normal aperture distributions). Specifically, most fractures can be eliminated leaving the remaining dominant sub-network with 90% of the permeability of the original fracture network. We determine how broad the aperture distribution must be to approach this behavior and the dependence of the dominant sub-network on the parameters of the aperture distribution. We also explore whether one can identify the dominant sub-network without doing flow calculations.
文摘Three new Fe-based microcrystalline alloys,i.e.,Fe_(73.1)Cu_(1.2)Nb_(3.2)Si_(12 5)B_(10), Fe_(73)Cu_1Nb_(1.5)Mo_2Si_(12.5)B_(10) and Fe_(73)Cu_1Zr_3C_(0.5)Mo_Si_(12.5)B_(10),were developed with su- perior magnetic properties.e.g.,high relative initial permeability of μ_i^15×10~4,low coercivity of H_c1.0A/m,high effective permeability and low core losses in a consid- crable wide frequency range and high pulse-magnetic permeability under narrow pulse. The optimum value of relative effective permeability,μ_5~1 is 16×10~4 under condition of f=1 kHz and H_m=0.4 A/m.The optimum values of core loss reach 57.9 30.2 and 68 W/kg under condition of f=50.100.100 KHz and B_m=0.5,0.2,0.3 T,respectively. These three alloys have superior stability of magnetic properties.Initial permeability may be not changed during heating at 130℃ up to 216 h.The main crystalline phase is ordered phase Fe_((75)+y)Si_((25)-y) which is ultrafine particles of average size 10—20 nm.
基金Supported by the National Basic Research Program of China(No.2009CB930102)the National High Technology Research and Development Program of China(No.2007AA03Z535)+3 种基金the National Natural Science Foundation of China(No.21004062)the China-Japan-Korea Foresight Program(No.20621140369)"100 Talents Program" of the Chinese Academy of Sciences(No.KGCX2- YW-802) the Project of Jilin Provincial Science & Technology Department,China(No.200705110)
文摘Enhanced permeation and retention(EPR) targeting effect of rhodamine B labeled PEG-b-P(LA-co-DHP) [PEG:poly(ethylene glycol);LA:L-lactide;DHP:2,2-dihydroxylmethyl-propylene carbonate] micelles(RhB-micelles) was observed in H22 liver cancer bearing mice.The RhB-micelles were prepared by conjugating rhodamine B with the DHP units of amphiphilic block copolymer PEG-b-P(LA-co-DHP) followed by subsequent self-assembling of the conjugate.The parent copolymer PEG-b-P(LA-co-DHP) was synthesized by ring-opening copolymerization of LA and DHP with PEG as macroinitiator and diethyl zinc(ZnEt2) as catalyst.The micelles have a spherical shape and the average diameter is ca.50 nm by TEM(transmission electron microscope) or 80 nm by DLS(dynamic light scattering).Their in vitro cell uptake experiment by CLSM(confocal laser scanning microscopy) and flow cytometry showed preferential internalization of micelles by MCF-7 human breast cancer cells to free RhB.The in vivo tests by live animal imaging and ex vivo excised organ imaging showed that after vena tail injection,free RhB molecules were distributed in the whole body through the circulation system and then gradually metabolized and excreted and there was no preferential partition in tumor bed from the beginning to the end.But the RhB-micelles were preferentially distributed to the tumor bed so that their concentration(fluorescent intensity) in tumor bed got the level of the liver at a certain time point between 1 and 6 h and reached a maximum relative intensity at around 12 h,indicating an obvious EPR effect of RhB-micelles in H22 liver cancer.
基金This work was supported by grants from startup supports of Soochow University and the Program for Jiangsu Specially-Appointed Professors.This work was also supported by the National Natural Science Foundation of China(No.31900988)the Natural Science Foundation of Jiangsu Province(No.SBK2019040088).
文摘The enhanced permeability retention(EPR)effect based nanomedicine has been widely used for tumor targeting during the past decades.Here we unexpectedly observed the similar"EPR effect"at the site of iniury.We found that the temporary dilated and leaky blood vessels caused by the potent vasodilator histamine in response to injury allowed the injected nanoparticles to pass through the vasculature and reached the injured tissue.Our finding shows the potential underline mechanism of"EPR effect"at the injured site.By loading with antibiotics,we further demonstrated a new strategy for prevention of infection at the site of injury.
基金supported by the National Natural Science Foundation of China(Grant Nos.51374213&51674251)the State Key Research Development Program of China(Grant No.2016YFC0600705)+3 种基金the National Natural Science Fund for Distinguished Young Scholars(Grant No.51125017)Fund for Creative Research and Development Group Program of Jiangsu Province(Grant No.2014-27)Science Fund for Creative Research Groups of the National Natural Science Foundation of China(Grant No.51421003)the State Key Research Development Program of China(Grant No.2016YFC0600705)
文摘The CO_2 permeability of fractured coal is of great significance to both coalbed gas extraction and CO_2 storage in coal seams, but the effects of high confining pressure, high injection pressure and elevated temperature on the CO_2 permeability of fractured coal with different fracture extents have not been investigated thoroughly. In this paper, the CO_2 permeability of fractured coals sampled from a Pingdingshan coal mine in China and artificially fractured to a certain extent is investigated through undrained triaxial tests. The CO_2 permeability is measured under the confining pressure with a range of 10–25 MPa, injection pressure with a range of 6–12 MPa and elevated temperature with a range of 25–70°C. A mechanistic model is then proposed to characterize the CO_2 permeability of the fractured coals. The effects of thermal expansion, temperature-induced reduction of adsorption capacity, and thermal micro-cracking on the CO_2 permeability are explored. The test results show that the CO_2 permeability of naturally fractured coal saliently increases with increasing injection pressure. The increase of confining pressure reduces the permeability of both naturally fractured coal and secondarily fractured coal. It is also observed that initial fracturing by external loads can enhance the permeability, but further fracturing reduces the permeability. The CO_2 permeability decreases with the elevation of temperature if the temperature is lower than 44°C, but the permeability increases with temperature once the temperature is beyond 44°C. The mechanistic model well describes these compaction mechanisms induced by confining pressure, injection pressure and the complex effects induced by elevated temperature.
文摘Cancer nanomedicine is defined as the application of nanotechnology and nanomaterials for the formulation of cancer therapeutics that can overcome the impediments and restrictions of traditional chemotherapeutics.Multidrug resistance(MDR)in cancer cells can be defined as a decrease or abrogation in the efficacy of anticancer drugs that have different molecular structures and mechanisms of action and is one of the primary causes of therapeutic failure.There have been successes in the development of cancer nanomedicine to overcome MDR;however,relatively few of these formulations have been approved by the United States Food and Drug Administration for the treatment of cancer.This is primarily due to the paucity of knowledge about nanotechnology and the fundamental biology of cancer cells.Here,we discuss the advances,types of nanomedicines,and the challenges regarding the translation of in vitro to in vivo results and their relevance to effective therapies.
基金supported by the National Basic Research Program of China(“973”Program)(Grant No.2011CB201004)the ImportantNational Science and Technology Project of China(Grant No.2011ZX05014-005-003HZ)+2 种基金the National Natural Science Foundation of China(Grant No.11102237)the Introducing Talents of Discipline to Universities of China(Grant No.B08028)the Fundamental Research Funds for the Central Universities(Grant No.27R1102065A).
文摘Numerical simulation of two-phase flow in fractured karst reservoirs is still a challenging issue.The triple-porosity model is the major approach up to now.However,the triple-continuum assumption in this model is unacceptable for many cases.In the present work,an efficient numerical model has been developed for immiscible two-phase flowin fractured karst reservoirs based on the idea of equivalent continuum representation.First,based on the discrete fracture-vug model and homogenization theory,the effective absolute permeability tensors for each grid blocks are calculated.And then an analytical procedure to obtain a pseudo relative permeability curves for a grid block containing fractures and cavities has been successfully implemented.Next,a full-tensor simulator has been designed based on a hybrid numerical method(combining mixed finite element method and finite volume method).A simple fracture system has been used to demonstrate the validity of our method.At last,we have used the fracture and cavity statistics data fromTAHE outcrops in west China,effective permeability values and other parameters from our code,and an equivalent continuum simulator to calculate the water flooding profiles for more realistic systems.
文摘When pressure in gas reservoirs fall below the dew point,condensate banking occurs around the wellbore which alters the fluid flow behavior.The state of the knowledge on this flow behavior is yet not fully-developed;which leads to severe problems in field.In this study,the Al-Hussainy,Ramey,and Crawford Solution Technique has been modified to accurately resemble the real gas flow behavior for this condition.First,a primary investigation was conducted to observe the severity of the problem in three condensate banked reservoirs.Then this study involved Constant Composition Expansion tests for determining the dew point,Prode Properties software for modeling the reservoir fluid properties,Flowing Material Balance(or Dynamic P/Z Material Balance)for identifying the pressure distribution of the selected reservoirs.The real field data along with the determined(analytical,computational,and experimental)data were incorporated to check the validity of the models.The modification proposes a Dimensionless Correction Factor(CD)for any condensate banked reservoir and identifies parameters such as the Perforation Factor(Pf)and Heterogeneity Factor(n).It is found that the Modified Al-Hussainy,Ramey,and Crawford Solution Technique successfully models the actual flow characteristics of the stated condition.
基金supported by the Ministry of Science and Technology of China(2016YFA0201600 and 2016YFE0133100)the Program for International S&T Cooperation Projects of the Ministry of Science and Technology of China(2018YFE0117200)+5 种基金the National Natural Science Foundation of China(31800844 and 51861145302)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(11621505)the Major Research Program of Guangdong province(2019B090917011)the CAS Key Research Program for Frontier Sciences(QYZDJ-SSW-SLH022)the Austrian-Chinese Cooperative RTD Project(GJHZ201949,FFG and CAS)the CAS interdisciplinary innovation team。
文摘Due to their many advantageous properties,nanomaterials(NMs)have been utilized in diverse consumer goods,industrial products,and for therapeutic purposes.This situation leads to a constant risk of exposure and uptake by the human body,which are highly dependent on nanomaterial size.Consequently,an improved understanding of the interactions between different sizes of nanomaterials and biological systems is needed to design safer and more clinically relevant nano systems.We discuss the sizedependent effects of nanomaterials in living organisms.Upon entry into biological systems,nanomaterials can translocate biological barriers,distribute to various tissues and elicit different toxic effects on organs,based on their size and location.The association of nanomaterial size with physiological structures within organs determines the site of accumulation of nanoparticles.In general,nanomaterials smaller than 20 nm tend to accumulate in the kidney while nanomaterials between 20 and 100 nm preferentially deposit in the liver.After accumulating in organs,nanomaterials can induce inflammation,damage structural integrity and ultimately result in organ dysfunction,which helps better understand the size-dependent dynamic processes and toxicity of nanomaterials in organisms.The enhanced permeability and retention effect of nanomaterials and the utility of this phenomenon in tumor therapy are also highlighted.
基金Liaoning Provincial Department of Education Innovative Talents Support Project (Grant No. LR2017065)the Shenyang Science and Technology Program of China (Grant No. F16-205-1-44)the Shenyang Science and Technology Program of China (Grant No. Z17-5-078)。
文摘The field of nanomedicine in controlled drug delivery systems, especially for tumor targeting, has tremendously progressed over the past decades because of its plentiful benefits, such as biocompatibility, stability in blood circulation, and ability to reduce side effects. Although a large number of relevant papers are published every year, few nanodrugs are available for clinical treatment. The present review aimed to explore the barriers in nanomedicine delivery and tumor targeting. Rational design of nanomedicine should consider not only tumor heterogeneity, in vivo metabolism, and physicochemical properties, but also more efficient innovations in particulate formulations for clinical application.
基金supported by GACR(NANOCHEMO 14-8344S)by the Ministry of Health of the Czech Republic for conceptual development of research organization 00064203(University Hospital Motol,Prague,Czech Republic).
文摘Nanoparticle-mediated targeted delivery of drugs might significantly reduce the dosage and optimize their release properties,increase specificity and bioavailability,improve shelf life,and reduce toxicity.Some nanodrugs are able to overcome the blood-brain barrier that is an obstacle to treatment of brain tumors.Vessels in tumors have abnormal architecture and are highly permeable;moreover,tumors also have poor lymphatic drainage,allowing for accumulation of macromolecules greater than approximately 40 kDa within the tumor microenvironment.Nanoparticles exploit this feature,known as the enhanced permeability and retention effect,to target solid tumors.Active targeting,i.e.surface modification of nanoparticles,is a way to decrease uptake in normal tissue and increase accumulation in a tumor,and it usually involves targeting surface membrane proteins that are upregulated in cancer cells.The targeting molecules are typically antibodies or their fragments;aptamers;oligopeptides or small molecules.There are currently several FDA-approved nanomedicines,but none approved for brain tumor therapy.This review,based both on the study of literature and on the authors own experimental work describes a comprehensive overview of preclinical and clinical research of nanodrugs in therapy of brain tumors.