A unified description of finite nuclei and equation of state of neutron stars presents both a major challenge and also opportunities for understanding nuclear interactions.Inspired by the Lee-Huang-Yang formula of har...A unified description of finite nuclei and equation of state of neutron stars presents both a major challenge and also opportunities for understanding nuclear interactions.Inspired by the Lee-Huang-Yang formula of hardsphere gases,we develop effective nuclear interactions with an additional high-order density dependent term.While the original Skyrme force SLy4 is widely used in studies of neutron stars,there are not satisfactory global descriptions of finite nuclei.The refitted SLy4' force can improve descriptions of finite nuclei but slightly reduces the radius of neutron star of 1.4 M_☉ with M_☉ being the solar mass.We find that the extended SLy4 force with a higher-order density dependence can properly describe properties of both finite nuclei and GW170817 binary neutron stars,including the mass-radius relation and the tidal deformability.This demonstrates the essential role of high-order density dependence at ultrahigh densities.Our work provides a unified and predictive model for neutron stars,as well as new insights for the future development of effective interactions.展开更多
Instead of relying on the erroneous principles of Special Relativity, this paper proposes a new theory based on the emission of photons by a source and their re-emission by a transparent medium. Through over 60 articl...Instead of relying on the erroneous principles of Special Relativity, this paper proposes a new theory based on the emission of photons by a source and their re-emission by a transparent medium. Through over 60 articles, we have demonstrated that Special Relativity is based on optical experiments and observations that have been incorrectly explained by the theory of a non-existent ether. Our findings show that all known experiments can be explained using classical concepts of space and time, thereby refuting the theory of relativity. This article also addresses the fallacy of the widely accepted etheric Doppler effects and its significant role in the history of science.展开更多
基金Supported by the National Key R&D Program of China (Grant No.2018YFA0404403)the National Natural Science Foundation of China (Grant Nos.11975032,11835001,11790325,and 11961141003)。
文摘A unified description of finite nuclei and equation of state of neutron stars presents both a major challenge and also opportunities for understanding nuclear interactions.Inspired by the Lee-Huang-Yang formula of hardsphere gases,we develop effective nuclear interactions with an additional high-order density dependent term.While the original Skyrme force SLy4 is widely used in studies of neutron stars,there are not satisfactory global descriptions of finite nuclei.The refitted SLy4' force can improve descriptions of finite nuclei but slightly reduces the radius of neutron star of 1.4 M_☉ with M_☉ being the solar mass.We find that the extended SLy4 force with a higher-order density dependence can properly describe properties of both finite nuclei and GW170817 binary neutron stars,including the mass-radius relation and the tidal deformability.This demonstrates the essential role of high-order density dependence at ultrahigh densities.Our work provides a unified and predictive model for neutron stars,as well as new insights for the future development of effective interactions.
文摘Instead of relying on the erroneous principles of Special Relativity, this paper proposes a new theory based on the emission of photons by a source and their re-emission by a transparent medium. Through over 60 articles, we have demonstrated that Special Relativity is based on optical experiments and observations that have been incorrectly explained by the theory of a non-existent ether. Our findings show that all known experiments can be explained using classical concepts of space and time, thereby refuting the theory of relativity. This article also addresses the fallacy of the widely accepted etheric Doppler effects and its significant role in the history of science.