Effective stress analysis is performed to evaluate the residual displacement of a caisson quaywall during 1994 Hokkaido- Toho- Oki Earthquake and 1993 Kushiro- Oki Earthquake. The constitutive model used in this study...Effective stress analysis is performed to evaluate the residual displacement of a caisson quaywall during 1994 Hokkaido- Toho- Oki Earthquake and 1993 Kushiro- Oki Earthquake. The constitutive model used in this study is a multiple shear mechanism type defined in strain space and can take into account the effect of rotation of principal stress axis. The earthquake accelerations recorded at the outcropping rock during the earthquake are used as input bedrock motion. The results of finite element analysis are in good agreement with the observed behaviour of the quaywall. The analysis also indicates that liquefaction and high excess porewater pressure have a significant effect on the deformation of the caisson. Soil improvement is speculated as the most reliable measures against liquefaction. The influence of soil improvement and the reasonable improved area are discussed in the paper.展开更多
Various field investigations of earthquake disaster cases have confirmed that earthquake-induced liquefaction is a main factor causing significant damage to dyke,research on seismic performances of dyke is thus of gre...Various field investigations of earthquake disaster cases have confirmed that earthquake-induced liquefaction is a main factor causing significant damage to dyke,research on seismic performances of dyke is thus of great importance.In this paper,seismic responses of dyke on liquefiable soils were investigated by means of dynamic centrifuge model tests and three-dimensional(3D) effective stress analysis method which is based on a multiple shear mechanism model and a liquefaction front.For the prototype scale centrifuge tests,sine wave input motions with peak accelerations 0.806 m/s2,1.790 m/s2 and 3.133 m/s2 of varied amplitudes were adopted to study the seismic performances of dyke on the saturated soil layer foundation with relative density of approximately 30%.Then,corresponding numerical simulations were conducted to investigate the distribution and variations of deformation,acceleration,excess pore-water pressure(EPWP),and behaviors of shear dilatancy in the dyke and the liquefiable soil foundation.Moreover,detailed discussions and comparisons between numerical simulations and centrifuge tests were also presented.It is concluded that the computed results have a good agreement with the measured results by centrifuge tests.The physical and numerical models both indicate that the dyke hosted on liquefiable soils subjected to earthquake motions has exhibited larger settlement and lateral spread:the stronger the motion is,the larger the dyke deformation is.Compared to soils in the deep ground under the dyke and the free field,the EPWP ratio is much smaller in the shallow liquefiable soil beneath the dyke in spite of large deformation produced.For the same overburden depth soil from free site and the liquefiable foundation beneath dyke,the characteristics of effective stress path and stress-strain relations are different.All these results may be of theoretical and practical significance for seismic design of the dyke on liquefiable soils.展开更多
Using controlled liquefaction, a seismic isolation technique is introduced by which a large area with dozens of structures can be seismically isolated. The proposed Large Scale Seismic Isolation (LSSI) is in many wa...Using controlled liquefaction, a seismic isolation technique is introduced by which a large area with dozens of structures can be seismically isolated. The proposed Large Scale Seismic Isolation (LSSI) is in many ways similar to conventional base isolations. The required bearing is provided by a fully undrained pre-saturated liquefiable layer which has substantial vertical stiffness/capacity and minimal lateral stiffness. Moreover, required energy dissipation would be provided through material damping and Biot flow-induced damping within the liquefied layer. LSSI consists of a thick non- liquefiable crust layer and an underlying engineered pre-saturated liquefiable layer bounded by two impermeable thin clay layers. The liquefiable layer should be designed to trigger liquefaction as soon as possible within the early seconds of a design level seismic event. Adopting the energy-based GMP liquefaction theory, optimum gradation of the liquefiable layer is also investigated. It tumed out that LSSI would effectively reduce acceleration response spectrum within short to medium periods. Contribution of the proposed LSSI is more pronounced in the case of stronger ground motions such as near field events as well as ground motions with longer return periods.展开更多
文摘Effective stress analysis is performed to evaluate the residual displacement of a caisson quaywall during 1994 Hokkaido- Toho- Oki Earthquake and 1993 Kushiro- Oki Earthquake. The constitutive model used in this study is a multiple shear mechanism type defined in strain space and can take into account the effect of rotation of principal stress axis. The earthquake accelerations recorded at the outcropping rock during the earthquake are used as input bedrock motion. The results of finite element analysis are in good agreement with the observed behaviour of the quaywall. The analysis also indicates that liquefaction and high excess porewater pressure have a significant effect on the deformation of the caisson. Soil improvement is speculated as the most reliable measures against liquefaction. The influence of soil improvement and the reasonable improved area are discussed in the paper.
基金Financial supports provided by Science and Technological Fund of Anhui Province for Outstanding Youth(No.08040106830)National Natural Sciences Foundation of China(No.41172274)
文摘Various field investigations of earthquake disaster cases have confirmed that earthquake-induced liquefaction is a main factor causing significant damage to dyke,research on seismic performances of dyke is thus of great importance.In this paper,seismic responses of dyke on liquefiable soils were investigated by means of dynamic centrifuge model tests and three-dimensional(3D) effective stress analysis method which is based on a multiple shear mechanism model and a liquefaction front.For the prototype scale centrifuge tests,sine wave input motions with peak accelerations 0.806 m/s2,1.790 m/s2 and 3.133 m/s2 of varied amplitudes were adopted to study the seismic performances of dyke on the saturated soil layer foundation with relative density of approximately 30%.Then,corresponding numerical simulations were conducted to investigate the distribution and variations of deformation,acceleration,excess pore-water pressure(EPWP),and behaviors of shear dilatancy in the dyke and the liquefiable soil foundation.Moreover,detailed discussions and comparisons between numerical simulations and centrifuge tests were also presented.It is concluded that the computed results have a good agreement with the measured results by centrifuge tests.The physical and numerical models both indicate that the dyke hosted on liquefiable soils subjected to earthquake motions has exhibited larger settlement and lateral spread:the stronger the motion is,the larger the dyke deformation is.Compared to soils in the deep ground under the dyke and the free field,the EPWP ratio is much smaller in the shallow liquefiable soil beneath the dyke in spite of large deformation produced.For the same overburden depth soil from free site and the liquefiable foundation beneath dyke,the characteristics of effective stress path and stress-strain relations are different.All these results may be of theoretical and practical significance for seismic design of the dyke on liquefiable soils.
文摘Using controlled liquefaction, a seismic isolation technique is introduced by which a large area with dozens of structures can be seismically isolated. The proposed Large Scale Seismic Isolation (LSSI) is in many ways similar to conventional base isolations. The required bearing is provided by a fully undrained pre-saturated liquefiable layer which has substantial vertical stiffness/capacity and minimal lateral stiffness. Moreover, required energy dissipation would be provided through material damping and Biot flow-induced damping within the liquefied layer. LSSI consists of a thick non- liquefiable crust layer and an underlying engineered pre-saturated liquefiable layer bounded by two impermeable thin clay layers. The liquefiable layer should be designed to trigger liquefaction as soon as possible within the early seconds of a design level seismic event. Adopting the energy-based GMP liquefaction theory, optimum gradation of the liquefiable layer is also investigated. It tumed out that LSSI would effectively reduce acceleration response spectrum within short to medium periods. Contribution of the proposed LSSI is more pronounced in the case of stronger ground motions such as near field events as well as ground motions with longer return periods.