Verticillium dahliae is an important soil-borne fungal pathogen that causes great yield losses in many cash crops.Effectors of this fungus are known to regulate plant immunity but the mechanism much remains unclear.A ...Verticillium dahliae is an important soil-borne fungal pathogen that causes great yield losses in many cash crops.Effectors of this fungus are known to regulate plant immunity but the mechanism much remains unclear.A glycine-rich nuclear effector,VdCE51,was able to suppress immune responses in tobacco against Botrytis cinerea and Sclerotinia sclerotiorum.This effector was a required factor for full virulence of V.dahliae,and its nuclear localization was a requisite for suppressing plant immunity.The thioredoxin GhTRXH2,identified as a positive regulator of plant immunity,was a host target of VdCE51.Our findings show a virulence regulating mechanism whereby the secreted nuclear effector VdCE51 interferes with the transcription of PR genes,and the SA signaling pathway by inhibiting the accumulation of GhTRXH2,thus suppressing plant immunity.展开更多
Meloidogyne spp.is an economically important plant-parasitic nematode distributed worldwide.To fight with host immune system for successful parasitism,plant parasitic nematodes secrete effectors to promote infection.I...Meloidogyne spp.is an economically important plant-parasitic nematode distributed worldwide.To fight with host immune system for successful parasitism,plant parasitic nematodes secrete effectors to promote infection.In this study,we identified one chorismate mutase(CM)effector from M.enterolobii,named Me-CM.Spatial and temporal expression assays exhibited Me-cm is expressed in esophageal glands and up-regulated at parasitic-stage juveniles.Me-CM affects the pathogenicity of M.enterolobii based on the reduced infection rate,number of galls,egg masses,eggs per mass and multiplication rate collected from RNA silencing experiments.We showed that Me-CM localized in the cytoplasm and nucleus of plant cells and decreased the expression level of the marker gene PR1 of salicylic acid(SA)pathway.Besides,constitutive expression of Me-cm in Arabidopsis thaliana significantly reduced salicylic acid concentration.These results suggested that M.enterolobii may secrete effector Me-CM to fight with plantimmunesystemsvia regulating SA signaling pathway when interacting with host plants,ultimately facilitating parasitism.展开更多
Avirulence effectors(Avrs),encoded by plant pathogens,can be recognized by plants harboring the corresponding resistance proteins,thereby initiating effector-triggered immunity(ETI).In susceptible plants,however,Avrs ...Avirulence effectors(Avrs),encoded by plant pathogens,can be recognized by plants harboring the corresponding resistance proteins,thereby initiating effector-triggered immunity(ETI).In susceptible plants,however,Avrs can function as effectors,facilitating infection via effector-triggered susceptibility(ETS).Mechanisms of Avr-mediated ETS remain largely unexplored.Here we report that the Magnaporthe oryzae effector Avr-PikD enters rice cells via the canonical cytoplasmic secretion pathway and suppresses rice basal defense.Avr-PikD interacts with an LSD1-like transcriptional activator AKIP30 of rice,and AKIP30 is also a positive regulator of rice immunity,whereas Avr-PikD impedes its nuclear localization and suppresses its transcriptional activity.In summary,M.oryzae delivers Avr-PikD into rice cells to facilitate ETS by inhibiting AKIP30-mediated transcriptional regulation of immune response against M.oryzae.展开更多
Puccinia triticina(Pt), as the causal agent of wheat leaf rust, employs a plethora of effector proteins to modulate wheat immunity for successful colonization. Understanding the molecular mechanisms underlying Pt effe...Puccinia triticina(Pt), as the causal agent of wheat leaf rust, employs a plethora of effector proteins to modulate wheat immunity for successful colonization. Understanding the molecular mechanisms underlying Pt effector-mediated wheat susceptibility remains largely unexplored. In this study, an effector Pt_21 was identified to interact with the apoplast-localized wheat thaumatin-like protein TaTLP1 using a yeast two-hybrid assay and the Pt_21-TaTLP1 interaction was characterized. The interaction between Pt_21 and TaTLP1 was validated by in vivo co-immunoprecipitation assay. A TaTLP1 variant,TaTLP1C71A, that was identified by the site-directed mutagenesis failed to interact with Pt_21. Pt_21was able to suppress Bax-mediated cell death in leaves of Nicotiana benthamiana and inhibit TaTLP1-mediated antifungal activity. Furthermore, infiltration of recombinant protein Pt_21 into leaves of transgenic wheat line overexpressing TaTLP1 enhanced the disease development of leaf rust compared to that in wild-type leaves. These findings demonstrate that Pt_21 suppresses host defense response by directly targeting wheat TaTLP1 and inhibiting its antifungal activity, which broadens our understanding of the molecular mechanisms underlying Pt effector-mediated susceptibility in wheat.展开更多
Meloidogyne incognita is a devastating plant-parasitic nematode.Effectors play important roles during the stages of nematodes infection and parasitism,but their molecular functions remain largely unknown.In this study...Meloidogyne incognita is a devastating plant-parasitic nematode.Effectors play important roles during the stages of nematodes infection and parasitism,but their molecular functions remain largely unknown.In this study,we characterized a new effector,Minc03329,which contains signal peptide for secretion and a C-type lectin domain.The yeast signal sequence trap experiments indicated that the signal peptide of Minc03329 is functional.In situ hybridization showed that Minc03329 was specifically expressed in the subventral esophageal gland.Real-time qPCR confirmed that the expression level of Minc03329 transcript was significantly increased in pre-parasitic and parasitic second-stage juveniles(pre-J2s and par-J2s).Tobacco rattle virus(TRV)-mediated gene silencing of Minc03329 in host plants largely reduced the pathogenicity of nematodes.On the contrary,ectopic expression of Minc03329 in Arabidopsis thaliana significantly increased plant susceptibility to nematodes.Transient expression of Minc03329 in Nicotiana benthamiana leaves suppressed the programmed cell death triggered by the pro-apoptotic protein BAX.Moreover,the transcriptome analysis of Minc03329-transgenic Arabidopsis and wild type revealed that many defense-related genes were significantly down-regulated.Interestingly,some different expressed genes were involved in the formation of nematode feeding sites.These results revealed that Minc03329 is an important effector for M.incognita,suppressing host defense response and promoting pathogenicity.展开更多
基金supported by the National Key Research and Development Program of China(2018YFE0112500)the Natural Science Basic Research Program of Shannxi Province(2024JCYBMS-183).We thank Professor Hui-shan Guo from the Institute of Microbiology,Chinese Academy of Sciences for providing the pNat-Tef-TrpC and pGKO-HPT vector,and Dr.Siwei Zhang from Northwest A&F University for providing the pER8-NeYFP,pER8-CeYFP,and pGEX-4T-1 vectors.
文摘Verticillium dahliae is an important soil-borne fungal pathogen that causes great yield losses in many cash crops.Effectors of this fungus are known to regulate plant immunity but the mechanism much remains unclear.A glycine-rich nuclear effector,VdCE51,was able to suppress immune responses in tobacco against Botrytis cinerea and Sclerotinia sclerotiorum.This effector was a required factor for full virulence of V.dahliae,and its nuclear localization was a requisite for suppressing plant immunity.The thioredoxin GhTRXH2,identified as a positive regulator of plant immunity,was a host target of VdCE51.Our findings show a virulence regulating mechanism whereby the secreted nuclear effector VdCE51 interferes with the transcription of PR genes,and the SA signaling pathway by inhibiting the accumulation of GhTRXH2,thus suppressing plant immunity.
基金supported by the Hainan Provincial Natural Science Foundation of China(323MS102 and 320QN307)Central Public-Interest Scientific Institution Basal Research Fund,China(1630042022008)。
文摘Meloidogyne spp.is an economically important plant-parasitic nematode distributed worldwide.To fight with host immune system for successful parasitism,plant parasitic nematodes secrete effectors to promote infection.In this study,we identified one chorismate mutase(CM)effector from M.enterolobii,named Me-CM.Spatial and temporal expression assays exhibited Me-cm is expressed in esophageal glands and up-regulated at parasitic-stage juveniles.Me-CM affects the pathogenicity of M.enterolobii based on the reduced infection rate,number of galls,egg masses,eggs per mass and multiplication rate collected from RNA silencing experiments.We showed that Me-CM localized in the cytoplasm and nucleus of plant cells and decreased the expression level of the marker gene PR1 of salicylic acid(SA)pathway.Besides,constitutive expression of Me-cm in Arabidopsis thaliana significantly reduced salicylic acid concentration.These results suggested that M.enterolobii may secrete effector Me-CM to fight with plantimmunesystemsvia regulating SA signaling pathway when interacting with host plants,ultimately facilitating parasitism.
基金supported by grants from the National Natural Science Foundation of China(31401692,31901960,32272513,32001976)the Natural Science Foundation of Fujian Province(2019J01766,2023J011418,2020J05177)+3 种基金Fujian Provincial Science and Technology Key Project(2022NZ030014)External Cooperation Program of Fujian Academy of Agricultural Sciences(DWHZ-2024-23)State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crop Opening Project(SKL2019005)Project of Fujian Provincial Department of Education(JAT190627)。
文摘Avirulence effectors(Avrs),encoded by plant pathogens,can be recognized by plants harboring the corresponding resistance proteins,thereby initiating effector-triggered immunity(ETI).In susceptible plants,however,Avrs can function as effectors,facilitating infection via effector-triggered susceptibility(ETS).Mechanisms of Avr-mediated ETS remain largely unexplored.Here we report that the Magnaporthe oryzae effector Avr-PikD enters rice cells via the canonical cytoplasmic secretion pathway and suppresses rice basal defense.Avr-PikD interacts with an LSD1-like transcriptional activator AKIP30 of rice,and AKIP30 is also a positive regulator of rice immunity,whereas Avr-PikD impedes its nuclear localization and suppresses its transcriptional activity.In summary,M.oryzae delivers Avr-PikD into rice cells to facilitate ETS by inhibiting AKIP30-mediated transcriptional regulation of immune response against M.oryzae.
基金supported by the National Natural Science Foundation of China (32172384 and 31501623)the Natural Science Foundation of Hebei (C2020204028)+1 种基金the Key Research and Development Project of Hebei Province (20326505D)the “Hundred Talents Program” for the Introduction of High-level Overseas Talents in Hebei Province (E2020100004)。
文摘Puccinia triticina(Pt), as the causal agent of wheat leaf rust, employs a plethora of effector proteins to modulate wheat immunity for successful colonization. Understanding the molecular mechanisms underlying Pt effector-mediated wheat susceptibility remains largely unexplored. In this study, an effector Pt_21 was identified to interact with the apoplast-localized wheat thaumatin-like protein TaTLP1 using a yeast two-hybrid assay and the Pt_21-TaTLP1 interaction was characterized. The interaction between Pt_21 and TaTLP1 was validated by in vivo co-immunoprecipitation assay. A TaTLP1 variant,TaTLP1C71A, that was identified by the site-directed mutagenesis failed to interact with Pt_21. Pt_21was able to suppress Bax-mediated cell death in leaves of Nicotiana benthamiana and inhibit TaTLP1-mediated antifungal activity. Furthermore, infiltration of recombinant protein Pt_21 into leaves of transgenic wheat line overexpressing TaTLP1 enhanced the disease development of leaf rust compared to that in wild-type leaves. These findings demonstrate that Pt_21 suppresses host defense response by directly targeting wheat TaTLP1 and inhibiting its antifungal activity, which broadens our understanding of the molecular mechanisms underlying Pt effector-mediated susceptibility in wheat.
基金funded by the National Natural Science Foundation of China(31672010 and 31871942)the Beijing Natural Science Foundation,China(6222054)+1 种基金the China Agriculture Research System(CARS-23)the Natural Science Foundation of Inner Mongolia Autonomous Region of China(2018MS03083)。
文摘Meloidogyne incognita is a devastating plant-parasitic nematode.Effectors play important roles during the stages of nematodes infection and parasitism,but their molecular functions remain largely unknown.In this study,we characterized a new effector,Minc03329,which contains signal peptide for secretion and a C-type lectin domain.The yeast signal sequence trap experiments indicated that the signal peptide of Minc03329 is functional.In situ hybridization showed that Minc03329 was specifically expressed in the subventral esophageal gland.Real-time qPCR confirmed that the expression level of Minc03329 transcript was significantly increased in pre-parasitic and parasitic second-stage juveniles(pre-J2s and par-J2s).Tobacco rattle virus(TRV)-mediated gene silencing of Minc03329 in host plants largely reduced the pathogenicity of nematodes.On the contrary,ectopic expression of Minc03329 in Arabidopsis thaliana significantly increased plant susceptibility to nematodes.Transient expression of Minc03329 in Nicotiana benthamiana leaves suppressed the programmed cell death triggered by the pro-apoptotic protein BAX.Moreover,the transcriptome analysis of Minc03329-transgenic Arabidopsis and wild type revealed that many defense-related genes were significantly down-regulated.Interestingly,some different expressed genes were involved in the formation of nematode feeding sites.These results revealed that Minc03329 is an important effector for M.incognita,suppressing host defense response and promoting pathogenicity.