Increasing attention has been paid to the efficiency improvement of the induction traction system of high-speed trains due to the high demand for energy saving. In emergency self-propelled mode, however, the dc-link v...Increasing attention has been paid to the efficiency improvement of the induction traction system of high-speed trains due to the high demand for energy saving. In emergency self-propelled mode, however, the dc-link voltage and the traction power of the motor are significantly reduced, resulting in decreased traction efficiency due to the low load and low speed operations. Aiming to tackle this problem, a novel efficiency improved control method is introduced to the emergency mode of high-speed train traction system in this paper. In the proposed method, a total loss model of induction motor considering the behaviors of both iron and copper loss is established. An improved iterative algorithm with decreased computational burden is then introduced, resulting in a fast solving of the optimal flux reference for loss minimization at each control period. In addition, considering the parameter variation problem due to the low load and low speed operations, a parameter estimation method is integrated to improve the controller's robustness. The effectiveness of the proposed method on efficiency improvement at low voltage and low load conditions is demonstrated by simulated and experimental results.展开更多
With the growing need for renewable energy,wind farms are playing an important role in generating clean power from wind resources.The best wind turbine architecture in a wind farm has a major influence on the energy e...With the growing need for renewable energy,wind farms are playing an important role in generating clean power from wind resources.The best wind turbine architecture in a wind farm has a major influence on the energy extraction efficiency.This paper describes a unique strategy for optimizing wind turbine locations on a wind farm that combines the capabilities of particle swarm optimization(PSO)and artificial neural networks(ANNs).The PSO method was used to explore the solution space and develop preliminary turbine layouts,and the ANN model was used to fine-tune the placements based on the predicted energy generation.The proposed hybrid technique seeks to increase energy output while considering site-specific wind patterns and topographical limits.The efficacy and superiority of the hybrid PSO-ANN methodology are proved through comprehensive simulations and comparisons with existing approaches,giving exciting prospects for developing more efficient and sustainable wind farms.The integration of ANNs and PSO in our methodology is of paramount importance because it leverages the complementary strengths of both techniques.Furthermore,this novel methodology harnesses historical data through ANNs to identify optimal turbine positions that align with the wind speed and direction and enhance energy extraction efficiency.A notable increase in power generation is observed across various scenarios.The percentage increase in the power generation ranged from approximately 7.7%to 11.1%.Owing to its versatility and adaptability to site-specific conditions,the hybrid model offers promising prospects for advancing the field of wind farm layout optimization and contributing to a greener and more sustainable energy future.展开更多
The goal of this research is to look at multi-target optimization of a two-stage helical gearbox in order to determine the best key design elements for reducing gearbox height and enhancing gearbox efficiency.To do th...The goal of this research is to look at multi-target optimization of a two-stage helical gearbox in order to determine the best key design elements for reducing gearbox height and enhancing gearbox efficiency.To do this,the method known as Taguchi and GRA(Grey Relation Analysis)were used in two stages to address the problem.The single-objective optimization problem was addressed first to close the gap between variable levels,and then the multi-objective optimization problem was solved to determine the best primary design variables.The first and second stage CWFWs(Coefficients of Wheel Face Width),ACS(Permissible Contact Stresses),and first stage gear ratio were also calculated.The study’s findings were utilized to identify the best values for five critical design aspects of a two-stage helical gearbox.展开更多
In this article, a novel scalarization technique, called the improved objective-constraint approach, is introduced to find efficient solutions of a given multiobjective programming problem. The presented scalarized pr...In this article, a novel scalarization technique, called the improved objective-constraint approach, is introduced to find efficient solutions of a given multiobjective programming problem. The presented scalarized problem extends the objective-constraint problem. It is demonstrated that how adding variables to the scalarized problem, can lead to find conditions for (weakly, properly) Pareto optimal solutions. Applying the obtained necessary and sufficient conditions, two algorithms for generating the Pareto front approximation of bi-objective and three-objective programming problems are designed. These algorithms are easy to implement and can achieve an even approximation of (weakly, properly) Pareto optimal solutions. These algorithms can be generalized for optimization problems with more than three criterion functions, too. The effectiveness and capability of the algorithms are demonstrated in test problems.展开更多
The Backscatter communication has gained widespread attention from academia and industry in recent years. In this paper, A method of resource allocation and trajectory optimization is proposed for UAV-assisted backsca...The Backscatter communication has gained widespread attention from academia and industry in recent years. In this paper, A method of resource allocation and trajectory optimization is proposed for UAV-assisted backscatter communication based on user trajectory. This paper will establish an optimization problem of jointly optimizing the UAV trajectories, UAV transmission power and BD scheduling based on the large-scale channel state signals estimated in advance of the known user trajectories, taking into account the constraints of BD data and working energy consumption, to maximize the energy efficiency of the system. The problem is a non-convex optimization problem in fractional form, and there is nonlinear coupling between optimization variables.An iterative algorithm is proposed based on Dinkelbach algorithm, block coordinate descent method and continuous convex optimization technology. First, the objective function is converted into a non-fractional programming problem based on Dinkelbach method,and then the block coordinate descent method is used to decompose the original complex problem into three independent sub-problems. Finally, the successive convex approximation method is used to solve the trajectory optimization sub-problem. The simulation results show that the proposed scheme and algorithm have obvious energy efficiency gains compared with the comparison scheme.展开更多
This paper considers a high energy efficiency dynamic connected(HEDC)structure,which promotes the practicability and reduces the power consumption of hybrid precoding system by lowresolution phase shifters(PSs).Based ...This paper considers a high energy efficiency dynamic connected(HEDC)structure,which promotes the practicability and reduces the power consumption of hybrid precoding system by lowresolution phase shifters(PSs).Based on the proposed structure,a new hybrid precoding algorithm is presented to optimize the energy efficiency,namely,HP-HEDC algorithm.Firstly,via a new defined effective optimal precoding matrix,the problem of optimizing the analog switch precoding matrix is formulated as a sparse representation problem.Thus,the optimal analog switch precoding matrix can be readily obtained by the branch-and-bound method.Then,the digital precoding matrix optimization problem is modeled as a dictionary update problem and solved by the method of optimal direction(MOD).Finally,the diagonal entries of the analog PS precoding matrix are optimized by exhaustive search independently since PS and antenna is one-to-one.Simulation results show that the HEDC structure enjoys low power consumption and satisfactory spectral efficiency.The proposed algorithm presents at least 50%energy efficiency improvement compared with other algorithms when the PS resolution is set as 3-bit.展开更多
This study delves into the intricate relationship between iron(Fe)content in kaolinite and its impact on the adsorption behavior of sodium oleate.The effects of different iron concentrations on adsorption energy,hydro...This study delves into the intricate relationship between iron(Fe)content in kaolinite and its impact on the adsorption behavior of sodium oleate.The effects of different iron concentrations on adsorption energy,hydrogen bond kinetics and adsorption efficiency were studied through simulation and experimental verification.The results show that the presence of iron in the kaolinite structure significantly improves the adsorption capacity of sodium oleate.Kaolinite samples with high iron content have better adsorption properties,lower adsorption energy levels and shorter and stronger hydrogen bonds than pure kaolinite.The optimal concentration of oleic acid ions for achieving maximum adsorption efficiency was identified as 1.2 mmol/L across different kaolinite samples.At this concentration,the adsorption rates and capacities reach their peak,with Fe-enriched kaolinite samples exhibiting notably higher flotation recovery rates.This optimal concentration represents a balance between sufficient oleic acid ion availability for surface interactions and the prevention of self-aggregation phenomena that could hinder adsorption.This study offers promising avenues for optimizing the flotation process in mineral processing applications.展开更多
Deep neural networks(DNNs)have achieved great success in many data processing applications.However,high computational complexity and storage cost make deep learning difficult to be used on resource-constrained devices...Deep neural networks(DNNs)have achieved great success in many data processing applications.However,high computational complexity and storage cost make deep learning difficult to be used on resource-constrained devices,and it is not environmental-friendly with much power cost.In this paper,we focus on low-rank optimization for efficient deep learning techniques.In the space domain,DNNs are compressed by low rank approximation of the network parameters,which directly reduces the storage requirement with a smaller number of network parameters.In the time domain,the network parameters can be trained in a few subspaces,which enables efficient training for fast convergence.The model compression in the spatial domain is summarized into three categories as pre-train,pre-set,and compression-aware methods,respectively.With a series of integrable techniques discussed,such as sparse pruning,quantization,and entropy coding,we can ensemble them in an integration framework with lower computational complexity and storage.In addition to summary of recent technical advances,we have two findings for motivating future works.One is that the effective rank,derived from the Shannon entropy of the normalized singular values,outperforms other conventional sparse measures such as the?_1 norm for network compression.The other is a spatial and temporal balance for tensorized neural networks.For accelerating the training of tensorized neural networks,it is crucial to leverage redundancy for both model compression and subspace training.展开更多
The reduction of energy consumption is an increasingly important topic of the railway system.Energy-efficient train control(EETC)is one solution,which refers to mathematically computing when to accelerate,which cruisi...The reduction of energy consumption is an increasingly important topic of the railway system.Energy-efficient train control(EETC)is one solution,which refers to mathematically computing when to accelerate,which cruising speed to hold,how long one should coast over a suitable space,and when to brake.Most approaches in literature and industry greatly simplify a lot of nonlinear effects,such that they ignore mostly the losses due to energy conversion in traction components and auxiliaries.To fill this research gap,a series of increasingly detailed nonlinear losses is described and modelled.We categorize an increasing detail in this representation as four levels.We study the impact of those levels of detail on the energy optimal speed trajectory.To do this,a standard approach based on dynamic programming is used,given constraints on total travel time.This evaluation of multiple test cases highlights the influence of the dynamic losses and the power consumption of auxiliary components on railway trajectories,also compared to multiple benchmarks.The results show how the losses can make up 50%of the total energy consumption for an exemplary trip.Ignoring them would though result in consistent but limited errors in the optimal trajectory.Overall,more complex trajectories can result in less energy consumption when including the complexity of nonlinear losses than when a simpler model is considered.Those effects are stronger when the trajectory includes many acceleration and braking phases.展开更多
The set-valued optimization problem with constraints is considered in the sense of super efficiency in locally convex linear topological spaces. Under the assumption of iccone-convexlikeness, by applying the seperatio...The set-valued optimization problem with constraints is considered in the sense of super efficiency in locally convex linear topological spaces. Under the assumption of iccone-convexlikeness, by applying the seperation theorem, Kuhn-Tucker's, Lagrange's and saddle points optimality conditions, the necessary conditions are obtained for the set-valued optimization problem to attain its super efficient solutions. Also, the sufficient conditions for Kuhn-Tucker's, Lagrange's and saddle points optimality conditions are derived.展开更多
Linear induction motors are superior to rotary induction motors in direct drive systems because they can generate direct forward thrust force independent of mechanical transmission.However,due to the large air gap and...Linear induction motors are superior to rotary induction motors in direct drive systems because they can generate direct forward thrust force independent of mechanical transmission.However,due to the large air gap and cut-open magnetic circuit,their efficiency and power factor are quite low,which limit their application in high power drive systems.To attempt this challenge,this work presents a system-level optimization method for a single-sided linear induction motor drive system.Not only the motor but also the control system is included in the analysis.A system-level optimization method is employed to gain optimal steady-state and dynamic performances.To validate the effectiveness of the proposed optimization method,experimental results on a linear induction motor drive are presented and discussed.展开更多
Leveraging energy harvesting abilities in wireless network devices has emerged as an effective way to prolong the lifetime of energy constrained systems.The system gains are usually optimized by designing resource all...Leveraging energy harvesting abilities in wireless network devices has emerged as an effective way to prolong the lifetime of energy constrained systems.The system gains are usually optimized by designing resource allocation algorithm appropriately.However,few works focus on the interaction that channel’s time-vary characters make the energy transfer inefficiently.To address this,we propose a novel system operation sequence for sensor-cloud system where the Sinks provide SWIPT for sensor nodes opportunistically during downlink phase and collect the data transmitted from sensor nodes in uplink phase.Then,the energy-efficiency maximization problem of the Sinks is presented by considering the time costs and energy consumption of channel detection.It is proved that the formulated problem is an optimal stopping process with optimal stopping rules.An optimal energy-efficiency(OEE)algorithm is designed to obtain the optimal stopping rules for SWIPT.Finally,the simulations are performed based on the OEE algorithm compared with the other two strategies to verify the effectiveness and gains in improving the system efficiency.展开更多
Worldwide, scarce water resources and substantial food demands require efficient water use and high yield.This study investigated whether irrigation frequency can be used to adjust soil moisture to increase grain yiel...Worldwide, scarce water resources and substantial food demands require efficient water use and high yield.This study investigated whether irrigation frequency can be used to adjust soil moisture to increase grain yield and water use efficiency(WUE) of high-yield maize under conditions of mulching and drip irrigation.A field experiment was conducted using three irrigation intervals in 2016: 6, 9, and 12 days(labeled D6, D9, and D12) and five irrigation intervals in 2017: 3, 6, 9, 12, and 15 days(D3, D6, D9, D12, and D15).In Xinjiang, an optimal irrigation quota is 540 mm for high-yield maize.The D3, D6, D9, D12, and D15 irrigation intervals gave grain yields of 19.7, 19.1–21.0, 18.8–20.0, 18.2–19.2, and 17.2 Mg ha^-1 and a WUE of 2.48, 2.53–2.80, 2.47–2.63, 2.34–2.45, and 2.08 kg m-3, respectively.Treatment D6 led to the highest soil water storage, but evapotranspiration and soil-water evaporation were lower than other treatments.These results show that irrigation interval D6 can help maintain a favorable soil-moisture environment in the upper-60-cm soil layer, reduce soilwater evaporation and evapotranspiration, and produce the highest yield and WUE.In this arid region and in other regions with similar soil and climate conditions, a similar irrigation interval would thus be beneficial for adjusting soil moisture to increase maize yield and WUE under conditions of mulching and drip irrigation.展开更多
Energy efficiency optimization techniques of electrical drive systems improve the overall efficiency and reduce the hardness of mechanical characteristics of the drive system. It is therefore important to reduce the s...Energy efficiency optimization techniques of electrical drive systems improve the overall efficiency and reduce the hardness of mechanical characteristics of the drive system. It is therefore important to reduce the slip of induction motor to maintain its stable operation at different frequencies and loads. In this paper a slip compensator, based on fuzzy logic incremental controller has been developed to improve the steady state performance of efficiency-optimized three-phase induction motor drive system. The slip control is accomplished through a fuzzy controller with 9 rules, taking speed error and speed error variation as inputs, to produce the frequency. The proposed controller reduces the slip occurring at low frequencies and light loads to certain value, and also reduces the energy efficiency of the system.展开更多
A multidisciplinary optimization was conducted to simultaneously improve the efficiency and reduce the radial force of a single-channel pump for wastewater treatment. A hybrid multi-objective evolutionary algorithm wa...A multidisciplinary optimization was conducted to simultaneously improve the efficiency and reduce the radial force of a single-channel pump for wastewater treatment. A hybrid multi-objective evolutionary algorithm was coupled with a surrogate model to optimize the geometry of the single-channel pump volute. Steady and unsteady Reynolds-averaged Navier-Stokes equations with a shear stress transport turbulence model were discretized using finite volume approximations and were then solved on tetrahedral grids to analyze the flow in the single-channel pump. The three objective functions represented the total efficiency, the sweep area of the radial force during one revolution, and the distance of the mass center of sweep area from the origin while the two design variables were related to the cross-sectional area of the internal flow of the volute. Latin hypercube sampling was employed to generate twelve design points within the design space, and response surface approximation models were constructed as surrogate models for the objectives based on the values of the objective function at the given design points. A fast non-dominated sorting genetic algorithm for local search was coupled with the surrogate models to determine the global Pareto-optimal solutions. The trade-off between the objectives was determined and was described in terms of the Pareto-optimal solutions. The results of the multi-objective optimization showed that the optimum design simultaneously improved the efficiency and reduced the radial force relative to those of the reference design.展开更多
Now the optimization strategies for power distribution are researched widely, and most of them are aiming to the optimal fuel economy and the driving cycle must be preknown. Thus if the actual driving condition deviat...Now the optimization strategies for power distribution are researched widely, and most of them are aiming to the optimal fuel economy and the driving cycle must be preknown. Thus if the actual driving condition deviates from the scheduled driving cycle, the effect of optimal results will be declined greatly. Therefore, the instantaneous optimization strategy carried out on-line is studied in this paper. The power split path and the transmission efficiency are analyzed based on a special power-split scheme and the efficiency models of the power transmitting components are established. The synthetical efficiency optimization model is established for enhancing the transmission efficiency and the fuel economy. The identification of the synthetical efficiency as the optimization objective and the constrain group are discussed emphatically. The optimization is calculated by the adaptive simulated annealing (ASA) algorithm and realized on-line by the radial basis function (RBF)-based similar models. The optimization for power distribution of the hybrid vehicle in an actual driving condition is carried out and the road test results are presented. The test results indicate that the synthetical efficiency optimization method can enhance the transmission efficiency and the fuel economy of the power-split hybrid electric vehicle (HEV) observably. Compared to the rules-based strategy the optimization strategy is optimal and achieves the approximate global optimization solution for the power distribution. The synthetical efficiency optimization solved by ASA algorithm can give attentions to both optimization quality and calculation efficiency, thus it has good application foreground for the power distribution of power-split HEV.展开更多
This note studies the optimality conditions of vector optimization problems involving generalized convexity in locally convex spaces. Based upon the concept of Dini set-valued directional derivatives, the necessary an...This note studies the optimality conditions of vector optimization problems involving generalized convexity in locally convex spaces. Based upon the concept of Dini set-valued directional derivatives, the necessary and sufficient optimality conditions are established for Henig proper and strong minimal solutions respectively in generalized preinvex vector optimization problems.展开更多
In this paper, a characterization of tightly properly efficient solutions of set-valued optimization problem is obtained. The concept of the well-posedness for a special scalar problem is linked with the tightly prope...In this paper, a characterization of tightly properly efficient solutions of set-valued optimization problem is obtained. The concept of the well-posedness for a special scalar problem is linked with the tightly properly efficient solutions of set-valued optimization problem.展开更多
This paper describes how the power efficiency of fully integrated Dickson charge pumps in high- voltage IC technologies can be improved considerably by implementing charge recycling techniques, by replacing the normal...This paper describes how the power efficiency of fully integrated Dickson charge pumps in high- voltage IC technologies can be improved considerably by implementing charge recycling techniques, by replacing the normal PN junction diodes by pulse-driven active diodes, and by choosing an appropriate advanced smart power IC technology. A detailed analysis reveals that the combination of these 3 methods more than doubles the power efficiency compared to traditional Dickson charge pump designs.展开更多
Aim To determine efficiency of multi-range hydro-mechanical stepless transmis- sion(HMT).Methods Ageneral model of HMT was of HMT was structured.On the basis of power flow analysis, the efficiency was obtained,Results...Aim To determine efficiency of multi-range hydro-mechanical stepless transmis- sion(HMT).Methods Ageneral model of HMT was of HMT was structured.On the basis of power flow analysis, the efficiency was obtained,Results efficiency of multi-range HMT changes continuously with output speed in speed range and is higher than the highest point of the hydraulic efficiency,The volumetric efficiency can potentially result in the speed fluctuation, which can be reduced or eliminated through controlling the ratio of the displacements ofhydraulic unity properly or changing the point of range exchanging .And the mechanical- constant output torque or different output torque under the condition of constant pressure when the transmission works in different parts of a range,Conclusion The multi-range HMT is an ideal stepless transmission with high efficiency.展开更多
基金supported in part by the Science Foundation of the Chinese Academy of Railway Sciences under Grant Number:2023QT001。
文摘Increasing attention has been paid to the efficiency improvement of the induction traction system of high-speed trains due to the high demand for energy saving. In emergency self-propelled mode, however, the dc-link voltage and the traction power of the motor are significantly reduced, resulting in decreased traction efficiency due to the low load and low speed operations. Aiming to tackle this problem, a novel efficiency improved control method is introduced to the emergency mode of high-speed train traction system in this paper. In the proposed method, a total loss model of induction motor considering the behaviors of both iron and copper loss is established. An improved iterative algorithm with decreased computational burden is then introduced, resulting in a fast solving of the optimal flux reference for loss minimization at each control period. In addition, considering the parameter variation problem due to the low load and low speed operations, a parameter estimation method is integrated to improve the controller's robustness. The effectiveness of the proposed method on efficiency improvement at low voltage and low load conditions is demonstrated by simulated and experimental results.
文摘With the growing need for renewable energy,wind farms are playing an important role in generating clean power from wind resources.The best wind turbine architecture in a wind farm has a major influence on the energy extraction efficiency.This paper describes a unique strategy for optimizing wind turbine locations on a wind farm that combines the capabilities of particle swarm optimization(PSO)and artificial neural networks(ANNs).The PSO method was used to explore the solution space and develop preliminary turbine layouts,and the ANN model was used to fine-tune the placements based on the predicted energy generation.The proposed hybrid technique seeks to increase energy output while considering site-specific wind patterns and topographical limits.The efficacy and superiority of the hybrid PSO-ANN methodology are proved through comprehensive simulations and comparisons with existing approaches,giving exciting prospects for developing more efficient and sustainable wind farms.The integration of ANNs and PSO in our methodology is of paramount importance because it leverages the complementary strengths of both techniques.Furthermore,this novel methodology harnesses historical data through ANNs to identify optimal turbine positions that align with the wind speed and direction and enhance energy extraction efficiency.A notable increase in power generation is observed across various scenarios.The percentage increase in the power generation ranged from approximately 7.7%to 11.1%.Owing to its versatility and adaptability to site-specific conditions,the hybrid model offers promising prospects for advancing the field of wind farm layout optimization and contributing to a greener and more sustainable energy future.
文摘The goal of this research is to look at multi-target optimization of a two-stage helical gearbox in order to determine the best key design elements for reducing gearbox height and enhancing gearbox efficiency.To do this,the method known as Taguchi and GRA(Grey Relation Analysis)were used in two stages to address the problem.The single-objective optimization problem was addressed first to close the gap between variable levels,and then the multi-objective optimization problem was solved to determine the best primary design variables.The first and second stage CWFWs(Coefficients of Wheel Face Width),ACS(Permissible Contact Stresses),and first stage gear ratio were also calculated.The study’s findings were utilized to identify the best values for five critical design aspects of a two-stage helical gearbox.
文摘In this article, a novel scalarization technique, called the improved objective-constraint approach, is introduced to find efficient solutions of a given multiobjective programming problem. The presented scalarized problem extends the objective-constraint problem. It is demonstrated that how adding variables to the scalarized problem, can lead to find conditions for (weakly, properly) Pareto optimal solutions. Applying the obtained necessary and sufficient conditions, two algorithms for generating the Pareto front approximation of bi-objective and three-objective programming problems are designed. These algorithms are easy to implement and can achieve an even approximation of (weakly, properly) Pareto optimal solutions. These algorithms can be generalized for optimization problems with more than three criterion functions, too. The effectiveness and capability of the algorithms are demonstrated in test problems.
文摘The Backscatter communication has gained widespread attention from academia and industry in recent years. In this paper, A method of resource allocation and trajectory optimization is proposed for UAV-assisted backscatter communication based on user trajectory. This paper will establish an optimization problem of jointly optimizing the UAV trajectories, UAV transmission power and BD scheduling based on the large-scale channel state signals estimated in advance of the known user trajectories, taking into account the constraints of BD data and working energy consumption, to maximize the energy efficiency of the system. The problem is a non-convex optimization problem in fractional form, and there is nonlinear coupling between optimization variables.An iterative algorithm is proposed based on Dinkelbach algorithm, block coordinate descent method and continuous convex optimization technology. First, the objective function is converted into a non-fractional programming problem based on Dinkelbach method,and then the block coordinate descent method is used to decompose the original complex problem into three independent sub-problems. Finally, the successive convex approximation method is used to solve the trajectory optimization sub-problem. The simulation results show that the proposed scheme and algorithm have obvious energy efficiency gains compared with the comparison scheme.
基金supported by the National Natural Science Foundation of China(Grant No.61971117)the Natural Science Foundation of Hebei Province(Grant No.F2020501007)the S&T Program of Hebei(No.22377717D)。
文摘This paper considers a high energy efficiency dynamic connected(HEDC)structure,which promotes the practicability and reduces the power consumption of hybrid precoding system by lowresolution phase shifters(PSs).Based on the proposed structure,a new hybrid precoding algorithm is presented to optimize the energy efficiency,namely,HP-HEDC algorithm.Firstly,via a new defined effective optimal precoding matrix,the problem of optimizing the analog switch precoding matrix is formulated as a sparse representation problem.Thus,the optimal analog switch precoding matrix can be readily obtained by the branch-and-bound method.Then,the digital precoding matrix optimization problem is modeled as a dictionary update problem and solved by the method of optimal direction(MOD).Finally,the diagonal entries of the analog PS precoding matrix are optimized by exhaustive search independently since PS and antenna is one-to-one.Simulation results show that the HEDC structure enjoys low power consumption and satisfactory spectral efficiency.The proposed algorithm presents at least 50%energy efficiency improvement compared with other algorithms when the PS resolution is set as 3-bit.
基金supported by the Natural Science Foundation of China(No.52174232)the Project was supported by Open Research Grant of Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining(Nos.EC2022003 and EC2023005)+1 种基金Anhui University of Science and Technology 2023 Graduate Student Innovation Fund(No.2023cx2106)Open Research Grant of Anhui Engineering Research Center for Coal Clean Processing and Carbon Emission Reduction(No.CCCE-2023003).
文摘This study delves into the intricate relationship between iron(Fe)content in kaolinite and its impact on the adsorption behavior of sodium oleate.The effects of different iron concentrations on adsorption energy,hydrogen bond kinetics and adsorption efficiency were studied through simulation and experimental verification.The results show that the presence of iron in the kaolinite structure significantly improves the adsorption capacity of sodium oleate.Kaolinite samples with high iron content have better adsorption properties,lower adsorption energy levels and shorter and stronger hydrogen bonds than pure kaolinite.The optimal concentration of oleic acid ions for achieving maximum adsorption efficiency was identified as 1.2 mmol/L across different kaolinite samples.At this concentration,the adsorption rates and capacities reach their peak,with Fe-enriched kaolinite samples exhibiting notably higher flotation recovery rates.This optimal concentration represents a balance between sufficient oleic acid ion availability for surface interactions and the prevention of self-aggregation phenomena that could hinder adsorption.This study offers promising avenues for optimizing the flotation process in mineral processing applications.
基金supported by the National Natural Science Foundation of China(62171088,U19A2052,62020106011)the Medico-Engineering Cooperation Funds from University of Electronic Science and Technology of China(ZYGX2021YGLH215,ZYGX2022YGRH005)。
文摘Deep neural networks(DNNs)have achieved great success in many data processing applications.However,high computational complexity and storage cost make deep learning difficult to be used on resource-constrained devices,and it is not environmental-friendly with much power cost.In this paper,we focus on low-rank optimization for efficient deep learning techniques.In the space domain,DNNs are compressed by low rank approximation of the network parameters,which directly reduces the storage requirement with a smaller number of network parameters.In the time domain,the network parameters can be trained in a few subspaces,which enables efficient training for fast convergence.The model compression in the spatial domain is summarized into three categories as pre-train,pre-set,and compression-aware methods,respectively.With a series of integrable techniques discussed,such as sparse pruning,quantization,and entropy coding,we can ensemble them in an integration framework with lower computational complexity and storage.In addition to summary of recent technical advances,we have two findings for motivating future works.One is that the effective rank,derived from the Shannon entropy of the normalized singular values,outperforms other conventional sparse measures such as the?_1 norm for network compression.The other is a spatial and temporal balance for tensorized neural networks.For accelerating the training of tensorized neural networks,it is crucial to leverage redundancy for both model compression and subspace training.
基金supported by Swiss Federal Office of Transport,the ETH foundation and via the grant RAILPOWER.
文摘The reduction of energy consumption is an increasingly important topic of the railway system.Energy-efficient train control(EETC)is one solution,which refers to mathematically computing when to accelerate,which cruising speed to hold,how long one should coast over a suitable space,and when to brake.Most approaches in literature and industry greatly simplify a lot of nonlinear effects,such that they ignore mostly the losses due to energy conversion in traction components and auxiliaries.To fill this research gap,a series of increasingly detailed nonlinear losses is described and modelled.We categorize an increasing detail in this representation as four levels.We study the impact of those levels of detail on the energy optimal speed trajectory.To do this,a standard approach based on dynamic programming is used,given constraints on total travel time.This evaluation of multiple test cases highlights the influence of the dynamic losses and the power consumption of auxiliary components on railway trajectories,also compared to multiple benchmarks.The results show how the losses can make up 50%of the total energy consumption for an exemplary trip.Ignoring them would though result in consistent but limited errors in the optimal trajectory.Overall,more complex trajectories can result in less energy consumption when including the complexity of nonlinear losses than when a simpler model is considered.Those effects are stronger when the trajectory includes many acceleration and braking phases.
基金Supported by the National Natural Science Foundation of China (10461007)the Science and Technology Foundation of the Education Department of Jiangxi Province (GJJ09069)
文摘The set-valued optimization problem with constraints is considered in the sense of super efficiency in locally convex linear topological spaces. Under the assumption of iccone-convexlikeness, by applying the seperation theorem, Kuhn-Tucker's, Lagrange's and saddle points optimality conditions, the necessary conditions are obtained for the set-valued optimization problem to attain its super efficient solutions. Also, the sufficient conditions for Kuhn-Tucker's, Lagrange's and saddle points optimality conditions are derived.
文摘Linear induction motors are superior to rotary induction motors in direct drive systems because they can generate direct forward thrust force independent of mechanical transmission.However,due to the large air gap and cut-open magnetic circuit,their efficiency and power factor are quite low,which limit their application in high power drive systems.To attempt this challenge,this work presents a system-level optimization method for a single-sided linear induction motor drive system.Not only the motor but also the control system is included in the analysis.A system-level optimization method is employed to gain optimal steady-state and dynamic performances.To validate the effectiveness of the proposed optimization method,experimental results on a linear induction motor drive are presented and discussed.
基金This work was supported by Scientific Research Ability Improving Foundation for Young and Middle-Aged University Teachers in Guangxi(No.2020KY04030)The school introduces talents to start scientific research projects(No.2019KJQD17)+1 种基金This work was supported in part by the National Natural Science Foundation of China(No.61762010,No.61862007)Guangxi Natural Science Foundation(No.2018GXNSFAA138147).
文摘Leveraging energy harvesting abilities in wireless network devices has emerged as an effective way to prolong the lifetime of energy constrained systems.The system gains are usually optimized by designing resource allocation algorithm appropriately.However,few works focus on the interaction that channel’s time-vary characters make the energy transfer inefficiently.To address this,we propose a novel system operation sequence for sensor-cloud system where the Sinks provide SWIPT for sensor nodes opportunistically during downlink phase and collect the data transmitted from sensor nodes in uplink phase.Then,the energy-efficiency maximization problem of the Sinks is presented by considering the time costs and energy consumption of channel detection.It is proved that the formulated problem is an optimal stopping process with optimal stopping rules.An optimal energy-efficiency(OEE)algorithm is designed to obtain the optimal stopping rules for SWIPT.Finally,the simulations are performed based on the OEE algorithm compared with the other two strategies to verify the effectiveness and gains in improving the system efficiency.
基金research support from the National Key Research and Development Program of China (2016YFD0300110, 2016YFD0300101)the National Basic Research Program of China (2015CB150401)+2 种基金the National Natural Science Foundation of China (31360302)the Science and Technology Program of the Sixth Division of Xinjiang Construction Corps in China (1703)the Agricultural Science and Technology Innovation Program for financial support.
文摘Worldwide, scarce water resources and substantial food demands require efficient water use and high yield.This study investigated whether irrigation frequency can be used to adjust soil moisture to increase grain yield and water use efficiency(WUE) of high-yield maize under conditions of mulching and drip irrigation.A field experiment was conducted using three irrigation intervals in 2016: 6, 9, and 12 days(labeled D6, D9, and D12) and five irrigation intervals in 2017: 3, 6, 9, 12, and 15 days(D3, D6, D9, D12, and D15).In Xinjiang, an optimal irrigation quota is 540 mm for high-yield maize.The D3, D6, D9, D12, and D15 irrigation intervals gave grain yields of 19.7, 19.1–21.0, 18.8–20.0, 18.2–19.2, and 17.2 Mg ha^-1 and a WUE of 2.48, 2.53–2.80, 2.47–2.63, 2.34–2.45, and 2.08 kg m-3, respectively.Treatment D6 led to the highest soil water storage, but evapotranspiration and soil-water evaporation were lower than other treatments.These results show that irrigation interval D6 can help maintain a favorable soil-moisture environment in the upper-60-cm soil layer, reduce soilwater evaporation and evapotranspiration, and produce the highest yield and WUE.In this arid region and in other regions with similar soil and climate conditions, a similar irrigation interval would thus be beneficial for adjusting soil moisture to increase maize yield and WUE under conditions of mulching and drip irrigation.
文摘Energy efficiency optimization techniques of electrical drive systems improve the overall efficiency and reduce the hardness of mechanical characteristics of the drive system. It is therefore important to reduce the slip of induction motor to maintain its stable operation at different frequencies and loads. In this paper a slip compensator, based on fuzzy logic incremental controller has been developed to improve the steady state performance of efficiency-optimized three-phase induction motor drive system. The slip control is accomplished through a fuzzy controller with 9 rules, taking speed error and speed error variation as inputs, to produce the frequency. The proposed controller reduces the slip occurring at low frequencies and light loads to certain value, and also reduces the energy efficiency of the system.
文摘A multidisciplinary optimization was conducted to simultaneously improve the efficiency and reduce the radial force of a single-channel pump for wastewater treatment. A hybrid multi-objective evolutionary algorithm was coupled with a surrogate model to optimize the geometry of the single-channel pump volute. Steady and unsteady Reynolds-averaged Navier-Stokes equations with a shear stress transport turbulence model were discretized using finite volume approximations and were then solved on tetrahedral grids to analyze the flow in the single-channel pump. The three objective functions represented the total efficiency, the sweep area of the radial force during one revolution, and the distance of the mass center of sweep area from the origin while the two design variables were related to the cross-sectional area of the internal flow of the volute. Latin hypercube sampling was employed to generate twelve design points within the design space, and response surface approximation models were constructed as surrogate models for the objectives based on the values of the objective function at the given design points. A fast non-dominated sorting genetic algorithm for local search was coupled with the surrogate models to determine the global Pareto-optimal solutions. The trade-off between the objectives was determined and was described in terms of the Pareto-optimal solutions. The results of the multi-objective optimization showed that the optimum design simultaneously improved the efficiency and reduced the radial force relative to those of the reference design.
基金supported by National Natural Science Foundation of China(Grant No.51005017)
文摘Now the optimization strategies for power distribution are researched widely, and most of them are aiming to the optimal fuel economy and the driving cycle must be preknown. Thus if the actual driving condition deviates from the scheduled driving cycle, the effect of optimal results will be declined greatly. Therefore, the instantaneous optimization strategy carried out on-line is studied in this paper. The power split path and the transmission efficiency are analyzed based on a special power-split scheme and the efficiency models of the power transmitting components are established. The synthetical efficiency optimization model is established for enhancing the transmission efficiency and the fuel economy. The identification of the synthetical efficiency as the optimization objective and the constrain group are discussed emphatically. The optimization is calculated by the adaptive simulated annealing (ASA) algorithm and realized on-line by the radial basis function (RBF)-based similar models. The optimization for power distribution of the hybrid vehicle in an actual driving condition is carried out and the road test results are presented. The test results indicate that the synthetical efficiency optimization method can enhance the transmission efficiency and the fuel economy of the power-split hybrid electric vehicle (HEV) observably. Compared to the rules-based strategy the optimization strategy is optimal and achieves the approximate global optimization solution for the power distribution. The synthetical efficiency optimization solved by ASA algorithm can give attentions to both optimization quality and calculation efficiency, thus it has good application foreground for the power distribution of power-split HEV.
文摘This note studies the optimality conditions of vector optimization problems involving generalized convexity in locally convex spaces. Based upon the concept of Dini set-valued directional derivatives, the necessary and sufficient optimality conditions are established for Henig proper and strong minimal solutions respectively in generalized preinvex vector optimization problems.
文摘In this paper, a characterization of tightly properly efficient solutions of set-valued optimization problem is obtained. The concept of the well-posedness for a special scalar problem is linked with the tightly properly efficient solutions of set-valued optimization problem.
文摘This paper describes how the power efficiency of fully integrated Dickson charge pumps in high- voltage IC technologies can be improved considerably by implementing charge recycling techniques, by replacing the normal PN junction diodes by pulse-driven active diodes, and by choosing an appropriate advanced smart power IC technology. A detailed analysis reveals that the combination of these 3 methods more than doubles the power efficiency compared to traditional Dickson charge pump designs.
文摘Aim To determine efficiency of multi-range hydro-mechanical stepless transmis- sion(HMT).Methods Ageneral model of HMT was of HMT was structured.On the basis of power flow analysis, the efficiency was obtained,Results efficiency of multi-range HMT changes continuously with output speed in speed range and is higher than the highest point of the hydraulic efficiency,The volumetric efficiency can potentially result in the speed fluctuation, which can be reduced or eliminated through controlling the ratio of the displacements ofhydraulic unity properly or changing the point of range exchanging .And the mechanical- constant output torque or different output torque under the condition of constant pressure when the transmission works in different parts of a range,Conclusion The multi-range HMT is an ideal stepless transmission with high efficiency.