With the method of differential optical absorption spectroscopy (DOAS), average concentrations of aerosol particles along light path were measured with a flashlight source in Chiba area during the period of one mont...With the method of differential optical absorption spectroscopy (DOAS), average concentrations of aerosol particles along light path were measured with a flashlight source in Chiba area during the period of one month. The optical thickness at 550 nm is compared with the concentration of ground-measured suspended particulate matter (SPM). Good correlations are found between the DOAS and SPM data, leading to the determination of the aerosol mass extinction efficiency (MEE) to be possible in the lower troposphere. The average MEE value is about 7.6m^2.g^-1 , and the parameter exhibits a good correlation with the particle size as determined from the wavelength dependence of the DOAS signal intensity.展开更多
The novel SiC foam valve tray was made of thin slices of SiC foam material with a high specific surfacearea. Hydrodynamic performances of the novel SiC foam valve tray were studied with air-water system at atmos-pheri...The novel SiC foam valve tray was made of thin slices of SiC foam material with a high specific surfacearea. Hydrodynamic performances of the novel SiC foam valve tray were studied with air-water system at atmos-pheric pressure. These performance parameters included pressure drop, entrainment, weeping and clear liquidheight. The mass transfer efficiency of the SiC foam valve tray was measured in laboratory plate column. Comparedwith the F1 float valve tray, the dry pressure drop was decreased about 25%, the entrainment rate was about 70%lower at high gas load, the weeping was much better, and the mass transfer efficiency was far higher. Thus, theoverall performance of the novel SiC foam valve tray was better than that of F1 float valve tray.展开更多
Solvent extraction phenol from coal tar were carried out with novel composite YH-3 as extraction agent, and the high flux centrifugal extractor was used as extraction device. Under the premise of high phenol extractio...Solvent extraction phenol from coal tar were carried out with novel composite YH-3 as extraction agent, and the high flux centrifugal extractor was used as extraction device. Under the premise of high phenol extraction rate, composite YH-3 extraction agent reduces n-n interaction between phenolic compounds and aromatic hydrocarbons, thus decreasing the entrainment of neutral oil. The optimization of operation conditions, such as the diameter of heavy phase weir HWD, the flow ratio, the total flow rate and the rotation speed, are necessary. For single stage extraction experiment, the mass transfer efficiency was up to 84% while the rate of extraction agent loss was lower than 0.28% with the operation conditions of 29 mm of the heavy phase weir diameter (HWD), 1:1-1.4:1 of the flow ratio range, 160-200 mL/min of the total flow rate and the rotation speed varied from 2200 to 2600 r/min. For three stage counter-current test, the mass transfer efficiency reached up to 92.6% with the optimum operation condition of 29 mm of the HWD, 1:1 of the flow ratio, 200 rnL/min of the total flow rate and 2400 r/rain of the rotation speed. The results indicated that phenol could be extracted effectively from coal tar in the process of multistage continuous count current centrifugal extraction.展开更多
Occasionally, the Whipple shields are used for the protection of a space station and a satellite against the meteoroids and orbital debris. In the Whipple shields each layer of the shield depletes part of high speed p...Occasionally, the Whipple shields are used for the protection of a space station and a satellite against the meteoroids and orbital debris. In the Whipple shields each layer of the shield depletes part of high speed projectile en- ergy either by breaking the projectile or absorbing its energy. Similarly, this investigation uses the Whipple shields against the shaped charge to protect the light armour such as infantry fighting vehicles with a little modification in their design. The unsteady multiple interactions of shaped charge jet with the Whipple shield package against the steady homogeneous target is scrutinized to optimize the shield thickness. Sim- ulations indicate that the shield thickness of 0.75 mm offers an optimum configuration against the shaped charge. Exper- iments also support this evidence.展开更多
The Johnson-Holmquist constitutive ceramic model is re-implemented into the LS_ DYNA3D program to simulate the penetration of long rod projectile into ceramic/armor steel composite targets. The damage evolution, fract...The Johnson-Holmquist constitutive ceramic model is re-implemented into the LS_ DYNA3D program to simulate the penetration of long rod projectile into ceramic/armor steel composite targets. The damage evolution, fracture propagation, and spall damage in the ceramic/armor targets is represented during the simulation procedure and the accuracy of the penetration depth comparing between the simulating and experimental results is reliable with an error less than 8 %. The relationship between the mass efficiency factor, differential factor and ceramic tiles thickness is given out for the penetration results with/without a cover plate.展开更多
The hygroscopic properties of mixed aerosol particles are crucial for the application of remote sensing products of aerosol optical parameters in the study of air quality and climate at multiple scales. In this study,...The hygroscopic properties of mixed aerosol particles are crucial for the application of remote sensing products of aerosol optical parameters in the study of air quality and climate at multiple scales. In this study, the authors investigated aerosol optical properties as a func tion of relative humidity (RH) for two representative me tropolises: Beijing and Hong Kong. In addition to the RH data, mass concentrations of PM10 (particulate matter up to 10 utm in diameter) and aerosol scattering extinction coefficient (aext) data were used. The relationship between the mass scattering extinction efficiency (MEE, defined as O'ext/PMl0) and RH can be expressed by regression func tions asf= 1.52x + 0.29 (re= 0.77),f= 1.42x + 1.53 (re= 0.58),f= 1.19x + 0.65 (re= 0.59), andf= 1.58x + 1.30 (re = 0.61) for spring, summer, autumn, and winter, respec tively, in Beijing. Here, f represents MEE, x represents I/(1-RH), and the coefficients of determination are pre sented in parentheses. Conversely, in Hong Kong, the corresponding functions are f= 1.98x- 1.40 (r^2= 0.55),f = 1.32x - 0.36 (r^2 = 0.26),f= 1.87x - 0.65 (r^2 = 0.64), and f= 2.39x - 1.47 (r^2 = 0.72), respectively. The MEE values for Hong Kong at high RHs (RH 〉 70%) are higher than those for Beijing, except in summer; this suggests that aerosols in Hong Kong are more hygroscopic than those in Beijing for the other three seasons, but the aerosol hy groscopicity is similarly high in summer over both cities. This study describes the effects of moisture on aerosol scattering extinction coefficients and provides a potential method of studying atmospheric visibility and ground level air quality using some of the optical remote sensing products of satellites.展开更多
The cyclone separator is an important separation device.This paper presents a new type of embedded two-stage cyclone,which includes a 2 nd-stage cyclone(internal traditional cyclone)with multiple inlets and a 1 st-sta...The cyclone separator is an important separation device.This paper presents a new type of embedded two-stage cyclone,which includes a 2 nd-stage cyclone(internal traditional cyclone)with multiple inlets and a 1 st-stage cyclone(outer cylinder)that unifies the 2 nd-stage cyclone inlets into one inlet.The Taguchi experimental method was used to study the two-stage cyclone separator’s inlet area on its performance.Studies have shown that the increase of the 1 st-stage cyclone inlet area and the increase in the number of 2 nd-stage cyclone inlets(N)positively affect reducing the pressure drop and a negative effect on efficiency.It is recommended to use 2 S(the original 1 st-stage cyclone inlet area)of the 1 st-stage cyclone inlet area and 2 N of the 2 nd-stage cyclone inlets when separating fine particles.Compared with a traditional cyclone,the pressure drop is reduced by 1303 Pa,the mass separation efficiency(Eq)is increased by 0.56%,and the number separation efficiency(En)is increased by 2.05%.When separating larger particles,it is recommended to use 2 S of the 1 st-stage cyclone inlet area and 4 N of the 2 nd-stage cyclone inlets.Compared with a traditional cyclone,although Endecreases slightly,the pressure drop is reduced by 3055 Pa,and the Eqis increased by 0.56%.The research results provide new insight into the design of the cyclone.展开更多
Continuous data of aerosol optical thickness monitored using differential optical absorption spectroscopy (DOAS) are correlated with the concentration of ground-measured suspended particulate matter (SPM). A high ...Continuous data of aerosol optical thickness monitored using differential optical absorption spectroscopy (DOAS) are correlated with the concentration of ground-measured suspended particulate matter (SPM). A high correlation is found between the DOAS and the ground SPM data, making it possible to calculate the mass extinction efficiency of the aerosols in the atmosphere. It is found that the value of mean mass extinction efficiency (MEE) varies over a range of 2.6-13.7 m^2 g^-1, with smaller and larger values occurring for size distributions dominated by coarse and fine particles, respectively.展开更多
Experimental study on hydrodynamics and mass transfer efficiencyof jet coflow packing tray (JCPT) was conducted in a φ285 mm columnand φ200 mm column, respectively. Compared with new vertical sievetray which has bee...Experimental study on hydrodynamics and mass transfer efficiencyof jet coflow packing tray (JCPT) was conducted in a φ285 mm columnand φ200 mm column, respectively. Compared with new vertical sievetray which has been applied in the petrochemical industry since 1968,the JCPT has lower pressure drop, higher capacity and higher masstransfer efficiency, and seems promising in commercial application.展开更多
Exploring platinum group metal-free electrocatalysts with superior catalytic performance and favorable durability for oxygen reduction reaction is a remaining bottleneck in process of developing sustainable techniques...Exploring platinum group metal-free electrocatalysts with superior catalytic performance and favorable durability for oxygen reduction reaction is a remaining bottleneck in process of developing sustainable techniques in energy storage and conversion. Herein, a hierarchical porous single atomic Fe electrocatalyst(Fe/Z8-E-C) is rationally designed and synthesized via acid etching, calcination, adsorption of Fe precursor and recalcination processes. This unique electrocatalyst Fe/Z8-E-C shows excellent oxygen reduction performance with a half-wave potential of 0.89 V in 0.1 mol/L KOH, 30 m V superior to that of commercial Pt/C(0.86 V), which is also significantly higher than that of typical Fe-doped ZIF-8 derived carbon nanoparticles(Fe/Z8-C) with a half-wave potential of 0.84 V. Furthermore, Fe/Z8-E-C-based Zn-air battery exhibits greatly enhanced peak power density and specific capacity than those of original Fe/Z8-C,verifying the remarkable performance and practicability of this specially designed hierarchical structure due to its efficient utilization of the active sites and rapid mass transfer. This present work proposes a new method to rationally synthesize single atom electrocatalysts loaded on hierarchical porous frame materials for catalysis and energy conversion.展开更多
In fall–winter, 2007–2013, visibility and light scattering coefficients(b sp) were measured along with PM_(2.5)mass concentrations and chemical compositions at a background site in the Pearl River Delta(PRD) r...In fall–winter, 2007–2013, visibility and light scattering coefficients(b sp) were measured along with PM_(2.5)mass concentrations and chemical compositions at a background site in the Pearl River Delta(PRD) region. The daily average visibility increased significantly(p 〈 0.01) at a rate of 1.1 km/year, yet its median stabilized at ~13 km. No haze days occurred when the 24-hr mean PM_(2.5)mass concentration was below 75 μg/m^3. By multiple linear regression on the chemical budget of particle scattering coefficient(b sp), we obtained site-specific mass scattering efficiency(MSE) values of 6.5 ± 0.2, 2.6 ± 0.3, 2.4 ± 0.7 and 7.3 ± 1.2 m2/g,respectively, for organic matter(OM), ammonium sulfate(AS), ammonium nitrate(AN) and sea salt(SS). The reconstructed light extinction coefficient(b ext) based on the Interagency Monitoring of Protected Visual Environments(IMPROVE) algorithm with our site-specific MSE revealed that OM, AS, AN, SS and light-absorbing carbon(LAC) on average contributed 45.9% ± 1.6%,25.6% ± 1.2%, 12.0% ± 0.7%, 11.2% ± 0.9% and 5.4% ± 0.3% to light extinction, respectively.Averaged b ext displayed a significant reduction rate of 14.1/Mm·year(p 〈 0.05); this rate would be 82% higher if it were not counteracted by increasing relative humidity(RH) and hygroscopic growth factor(f(RH)) at rates of 2.5% and 0.16/year-1(p 〈 0.01), respectively, during the fall–winter, 2007–2013. This growth of RH and f(RH) partly offsets the positive effects of lowered AS in improving visibility, and aggravated the negative effects of increasing AN to impair visibility.展开更多
Porous solid scaffolds play key roles in preventing nanocatalysts from agglomeration,greatly maintaining the catalytic efficiency and stability of nanocatalysts.However,facile preparation of robust scaffolds with high...Porous solid scaffolds play key roles in preventing nanocatalysts from agglomeration,greatly maintaining the catalytic efficiency and stability of nanocatalysts.However,facile preparation of robust scaffolds with high mass transfer efficiency for loading nanocatalysts remains a major challenge.Here,we fabricate a wood-inspired shape-memory chitosan scaffold for loading Au nanoparticles to reduce 4-nitrophenol via a simple“freeze-casting and dip-adsorption”approach.The obtained catalytic scaffold highly resembles the unidirectional microchannel structure of natural wood,resulting in robust mechanical properties and outstanding water absorption capacity.Additionally,Au nanoparticles can be firmly and uniformly anchored on the inner surface of these microchannels via electrostatic interaction,forming numerous microreactors.This catalytic system exhibits a high 4-nitrophenol conversion rate of 99%in 5 s and impressive catalytic stability even after continuously treating with more than 3 L of highly concentrated 4-nitrophenol solution(1 mmol/L).Therefore,the wood-like catalytic system presented here demonstrates the potential to be applied in the field of water treatment and environmental protection.展开更多
Soot particles,mainly coming from fuel combustion,affect climate forcing through absorbing light and also result in adverse human health outcomes.Though biodiesel or additives blending with diesel was considered envir...Soot particles,mainly coming from fuel combustion,affect climate forcing through absorbing light and also result in adverse human health outcomes.Though biodiesel or additives blending with diesel was considered environmentally friendly,the understanding on absorbing and oxidative capacity of soot emitted from them are still unclear.The watersoluble organic carbon(WSOC)content,surface chemical structure,light absorption and oxidative potential(OPDTT)of soot from biodiesel/diesel and chemicals/diesel blends were investigated utilizing total organic carbon analyzer,X-ray photoelectron spectrometer,ultraviolet–visible spectrophotometry and dithiothreitol(DTT)assay.The differences and correlations between soot properties were statistically analyzed.Chemicals/diesel blends soot owned significantly higher WSOC content,ratio of mass absorbing efficiency(MAE)in250 and 365 nm(E2/E3),OPDTT,and higher surface carbonyl content.Coconut biodiesel/diesel blends soot contained evidently higher aromatic carbon–oxygen single bond(ArC–O)content,and higher MAE365.The individual comparison of biodiesel/diesel blends showed20%coconut biodiesel blend owned the lowest WSOC,E2/E3 and OPDTT,while highest ArC–O and MAE365,representing strongest absorbing properties.Association analysis showed OPDTTwas significantly positively correlated with WSOC.Further,the evident negative correlation between MAE365 and OPDTT was observed.Our results showed coconut biodiesel/diesel blends soot induced lower levels of oxidative potential,whereas absorption of light was higher,which have far reaching consequences on climate forcing.Therefore,it is important to evaluate the balance point between light-absorbing properties and oxidative potential,under the wide use of biodiesel.展开更多
基金Project supported by National Natural Science Foundation of China (Grant No 10274080).
文摘With the method of differential optical absorption spectroscopy (DOAS), average concentrations of aerosol particles along light path were measured with a flashlight source in Chiba area during the period of one month. The optical thickness at 550 nm is compared with the concentration of ground-measured suspended particulate matter (SPM). Good correlations are found between the DOAS and SPM data, leading to the determination of the aerosol mass extinction efficiency (MEE) to be possible in the lower troposphere. The average MEE value is about 7.6m^2.g^-1 , and the parameter exhibits a good correlation with the particle size as determined from the wavelength dependence of the DOAS signal intensity.
基金Supported by the National Basic Research Program of China (2009CB219905) National Natural Science Foundation of China(21176172)+1 种基金 National Key Technology R&D Program (2011BAE03B07) Program for Changjiang Scholars and Innovative Research Team in University (IRT0936) The authors are also grateful to Institute of Metal, Chinese Academy of Science for providing SiC foam elements, and their support and discussions.
文摘The novel SiC foam valve tray was made of thin slices of SiC foam material with a high specific surfacearea. Hydrodynamic performances of the novel SiC foam valve tray were studied with air-water system at atmos-pheric pressure. These performance parameters included pressure drop, entrainment, weeping and clear liquidheight. The mass transfer efficiency of the SiC foam valve tray was measured in laboratory plate column. Comparedwith the F1 float valve tray, the dry pressure drop was decreased about 25%, the entrainment rate was about 70%lower at high gas load, the weeping was much better, and the mass transfer efficiency was far higher. Thus, theoverall performance of the novel SiC foam valve tray was better than that of F1 float valve tray.
文摘Solvent extraction phenol from coal tar were carried out with novel composite YH-3 as extraction agent, and the high flux centrifugal extractor was used as extraction device. Under the premise of high phenol extraction rate, composite YH-3 extraction agent reduces n-n interaction between phenolic compounds and aromatic hydrocarbons, thus decreasing the entrainment of neutral oil. The optimization of operation conditions, such as the diameter of heavy phase weir HWD, the flow ratio, the total flow rate and the rotation speed, are necessary. For single stage extraction experiment, the mass transfer efficiency was up to 84% while the rate of extraction agent loss was lower than 0.28% with the operation conditions of 29 mm of the heavy phase weir diameter (HWD), 1:1-1.4:1 of the flow ratio range, 160-200 mL/min of the total flow rate and the rotation speed varied from 2200 to 2600 r/min. For three stage counter-current test, the mass transfer efficiency reached up to 92.6% with the optimum operation condition of 29 mm of the HWD, 1:1 of the flow ratio, 200 rnL/min of the total flow rate and 2400 r/rain of the rotation speed. The results indicated that phenol could be extracted effectively from coal tar in the process of multistage continuous count current centrifugal extraction.
文摘Occasionally, the Whipple shields are used for the protection of a space station and a satellite against the meteoroids and orbital debris. In the Whipple shields each layer of the shield depletes part of high speed projectile en- ergy either by breaking the projectile or absorbing its energy. Similarly, this investigation uses the Whipple shields against the shaped charge to protect the light armour such as infantry fighting vehicles with a little modification in their design. The unsteady multiple interactions of shaped charge jet with the Whipple shield package against the steady homogeneous target is scrutinized to optimize the shield thickness. Sim- ulations indicate that the shield thickness of 0.75 mm offers an optimum configuration against the shaped charge. Exper- iments also support this evidence.
文摘The Johnson-Holmquist constitutive ceramic model is re-implemented into the LS_ DYNA3D program to simulate the penetration of long rod projectile into ceramic/armor steel composite targets. The damage evolution, fracture propagation, and spall damage in the ceramic/armor targets is represented during the simulation procedure and the accuracy of the penetration depth comparing between the simulating and experimental results is reliable with an error less than 8 %. The relationship between the mass efficiency factor, differential factor and ceramic tiles thickness is given out for the penetration results with/without a cover plate.
基金supported by the"Strategic Priority Research Program" of the Chinese Academy of Sciences (Grant No. XDA05040000)the National Natural Science Foundation of China (Grant Nos. 40775002 and 41175020)the National High Technology Research and Development Program of China (863 Program, Grant No. SQ2010AA1221583001)
文摘The hygroscopic properties of mixed aerosol particles are crucial for the application of remote sensing products of aerosol optical parameters in the study of air quality and climate at multiple scales. In this study, the authors investigated aerosol optical properties as a func tion of relative humidity (RH) for two representative me tropolises: Beijing and Hong Kong. In addition to the RH data, mass concentrations of PM10 (particulate matter up to 10 utm in diameter) and aerosol scattering extinction coefficient (aext) data were used. The relationship between the mass scattering extinction efficiency (MEE, defined as O'ext/PMl0) and RH can be expressed by regression func tions asf= 1.52x + 0.29 (re= 0.77),f= 1.42x + 1.53 (re= 0.58),f= 1.19x + 0.65 (re= 0.59), andf= 1.58x + 1.30 (re = 0.61) for spring, summer, autumn, and winter, respec tively, in Beijing. Here, f represents MEE, x represents I/(1-RH), and the coefficients of determination are pre sented in parentheses. Conversely, in Hong Kong, the corresponding functions are f= 1.98x- 1.40 (r^2= 0.55),f = 1.32x - 0.36 (r^2 = 0.26),f= 1.87x - 0.65 (r^2 = 0.64), and f= 2.39x - 1.47 (r^2 = 0.72), respectively. The MEE values for Hong Kong at high RHs (RH 〉 70%) are higher than those for Beijing, except in summer; this suggests that aerosols in Hong Kong are more hygroscopic than those in Beijing for the other three seasons, but the aerosol hy groscopicity is similarly high in summer over both cities. This study describes the effects of moisture on aerosol scattering extinction coefficients and provides a potential method of studying atmospheric visibility and ground level air quality using some of the optical remote sensing products of satellites.
基金financially supported by the National Key Research and Development Program of China(2016YFC0801700)the Project of the National Natural Science Foundation of China(51604018)the Basic Research Funding of the China Academy of Safety Science and Technology(2019JBKY11 and 2019JBKY04)。
文摘The cyclone separator is an important separation device.This paper presents a new type of embedded two-stage cyclone,which includes a 2 nd-stage cyclone(internal traditional cyclone)with multiple inlets and a 1 st-stage cyclone(outer cylinder)that unifies the 2 nd-stage cyclone inlets into one inlet.The Taguchi experimental method was used to study the two-stage cyclone separator’s inlet area on its performance.Studies have shown that the increase of the 1 st-stage cyclone inlet area and the increase in the number of 2 nd-stage cyclone inlets(N)positively affect reducing the pressure drop and a negative effect on efficiency.It is recommended to use 2 S(the original 1 st-stage cyclone inlet area)of the 1 st-stage cyclone inlet area and 2 N of the 2 nd-stage cyclone inlets when separating fine particles.Compared with a traditional cyclone,the pressure drop is reduced by 1303 Pa,the mass separation efficiency(Eq)is increased by 0.56%,and the number separation efficiency(En)is increased by 2.05%.When separating larger particles,it is recommended to use 2 S of the 1 st-stage cyclone inlet area and 4 N of the 2 nd-stage cyclone inlets.Compared with a traditional cyclone,although Endecreases slightly,the pressure drop is reduced by 3055 Pa,and the Eqis increased by 0.56%.The research results provide new insight into the design of the cyclone.
文摘Continuous data of aerosol optical thickness monitored using differential optical absorption spectroscopy (DOAS) are correlated with the concentration of ground-measured suspended particulate matter (SPM). A high correlation is found between the DOAS and the ground SPM data, making it possible to calculate the mass extinction efficiency of the aerosols in the atmosphere. It is found that the value of mean mass extinction efficiency (MEE) varies over a range of 2.6-13.7 m^2 g^-1, with smaller and larger values occurring for size distributions dominated by coarse and fine particles, respectively.
文摘Experimental study on hydrodynamics and mass transfer efficiencyof jet coflow packing tray (JCPT) was conducted in a φ285 mm columnand φ200 mm column, respectively. Compared with new vertical sievetray which has been applied in the petrochemical industry since 1968,the JCPT has lower pressure drop, higher capacity and higher masstransfer efficiency, and seems promising in commercial application.
基金supported by National Key R&D Program of China (No.2018YFA0108300)the Overseas High-level Talents Plan of China and Guangdong Province+3 种基金the Fundamental Research Funds for the Central Universitiesthe 100 Talents Plan Foundation of Sun Yat-sen Universitythe Program for Guangdong Introducing Innovative and Entrepreneurial Teams (No.2017ZT07C069)the Natinoal Natural Science Foundation of China (Nos.22075321,21821003,21890380 and 21905315)。
文摘Exploring platinum group metal-free electrocatalysts with superior catalytic performance and favorable durability for oxygen reduction reaction is a remaining bottleneck in process of developing sustainable techniques in energy storage and conversion. Herein, a hierarchical porous single atomic Fe electrocatalyst(Fe/Z8-E-C) is rationally designed and synthesized via acid etching, calcination, adsorption of Fe precursor and recalcination processes. This unique electrocatalyst Fe/Z8-E-C shows excellent oxygen reduction performance with a half-wave potential of 0.89 V in 0.1 mol/L KOH, 30 m V superior to that of commercial Pt/C(0.86 V), which is also significantly higher than that of typical Fe-doped ZIF-8 derived carbon nanoparticles(Fe/Z8-C) with a half-wave potential of 0.84 V. Furthermore, Fe/Z8-E-C-based Zn-air battery exhibits greatly enhanced peak power density and specific capacity than those of original Fe/Z8-C,verifying the remarkable performance and practicability of this specially designed hierarchical structure due to its efficient utilization of the active sites and rapid mass transfer. This present work proposes a new method to rationally synthesize single atom electrocatalysts loaded on hierarchical porous frame materials for catalysis and energy conversion.
基金funded by Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDB05010200)the Natural Science Foundation of China (Nos.41025012,41121063)the Bureau of Science,Technology and Information of Guangzhou (No.201300000130)
文摘In fall–winter, 2007–2013, visibility and light scattering coefficients(b sp) were measured along with PM_(2.5)mass concentrations and chemical compositions at a background site in the Pearl River Delta(PRD) region. The daily average visibility increased significantly(p 〈 0.01) at a rate of 1.1 km/year, yet its median stabilized at ~13 km. No haze days occurred when the 24-hr mean PM_(2.5)mass concentration was below 75 μg/m^3. By multiple linear regression on the chemical budget of particle scattering coefficient(b sp), we obtained site-specific mass scattering efficiency(MSE) values of 6.5 ± 0.2, 2.6 ± 0.3, 2.4 ± 0.7 and 7.3 ± 1.2 m2/g,respectively, for organic matter(OM), ammonium sulfate(AS), ammonium nitrate(AN) and sea salt(SS). The reconstructed light extinction coefficient(b ext) based on the Interagency Monitoring of Protected Visual Environments(IMPROVE) algorithm with our site-specific MSE revealed that OM, AS, AN, SS and light-absorbing carbon(LAC) on average contributed 45.9% ± 1.6%,25.6% ± 1.2%, 12.0% ± 0.7%, 11.2% ± 0.9% and 5.4% ± 0.3% to light extinction, respectively.Averaged b ext displayed a significant reduction rate of 14.1/Mm·year(p 〈 0.05); this rate would be 82% higher if it were not counteracted by increasing relative humidity(RH) and hygroscopic growth factor(f(RH)) at rates of 2.5% and 0.16/year-1(p 〈 0.01), respectively, during the fall–winter, 2007–2013. This growth of RH and f(RH) partly offsets the positive effects of lowered AS in improving visibility, and aggravated the negative effects of increasing AN to impair visibility.
基金supported by the National Key Research and Development Program of China (No.2021YFA0715700)the National Natural Science Foundation of China (Nos.1732011,U1932213,21975241)the University Synergy Innovation Program of Anhui Province,China (No.GXXT-2019-028).
文摘Porous solid scaffolds play key roles in preventing nanocatalysts from agglomeration,greatly maintaining the catalytic efficiency and stability of nanocatalysts.However,facile preparation of robust scaffolds with high mass transfer efficiency for loading nanocatalysts remains a major challenge.Here,we fabricate a wood-inspired shape-memory chitosan scaffold for loading Au nanoparticles to reduce 4-nitrophenol via a simple“freeze-casting and dip-adsorption”approach.The obtained catalytic scaffold highly resembles the unidirectional microchannel structure of natural wood,resulting in robust mechanical properties and outstanding water absorption capacity.Additionally,Au nanoparticles can be firmly and uniformly anchored on the inner surface of these microchannels via electrostatic interaction,forming numerous microreactors.This catalytic system exhibits a high 4-nitrophenol conversion rate of 99%in 5 s and impressive catalytic stability even after continuously treating with more than 3 L of highly concentrated 4-nitrophenol solution(1 mmol/L).Therefore,the wood-like catalytic system presented here demonstrates the potential to be applied in the field of water treatment and environmental protection.
基金supported by the National Natural Science Foundation of China(Nos.21577003,21876003)the National Key Research and Development Program of China(No.2016YFC0202200)+1 种基金the Australian Research Council under Discovery Project(No.DP180102632)the special fund of State Key Joint Laboratory of Environment Simulation and Pollution Control(No.19Y02ESPCP)
文摘Soot particles,mainly coming from fuel combustion,affect climate forcing through absorbing light and also result in adverse human health outcomes.Though biodiesel or additives blending with diesel was considered environmentally friendly,the understanding on absorbing and oxidative capacity of soot emitted from them are still unclear.The watersoluble organic carbon(WSOC)content,surface chemical structure,light absorption and oxidative potential(OPDTT)of soot from biodiesel/diesel and chemicals/diesel blends were investigated utilizing total organic carbon analyzer,X-ray photoelectron spectrometer,ultraviolet–visible spectrophotometry and dithiothreitol(DTT)assay.The differences and correlations between soot properties were statistically analyzed.Chemicals/diesel blends soot owned significantly higher WSOC content,ratio of mass absorbing efficiency(MAE)in250 and 365 nm(E2/E3),OPDTT,and higher surface carbonyl content.Coconut biodiesel/diesel blends soot contained evidently higher aromatic carbon–oxygen single bond(ArC–O)content,and higher MAE365.The individual comparison of biodiesel/diesel blends showed20%coconut biodiesel blend owned the lowest WSOC,E2/E3 and OPDTT,while highest ArC–O and MAE365,representing strongest absorbing properties.Association analysis showed OPDTTwas significantly positively correlated with WSOC.Further,the evident negative correlation between MAE365 and OPDTT was observed.Our results showed coconut biodiesel/diesel blends soot induced lower levels of oxidative potential,whereas absorption of light was higher,which have far reaching consequences on climate forcing.Therefore,it is important to evaluate the balance point between light-absorbing properties and oxidative potential,under the wide use of biodiesel.