In mammalians, the state of a somatic cell can be reversed from the terminal state to the totipotent state by means of somatic cell nuclear transfer (SCNT) (Gurdon, 1962) or induced pluripotent stem cells (iPSCs...In mammalians, the state of a somatic cell can be reversed from the terminal state to the totipotent state by means of somatic cell nuclear transfer (SCNT) (Gurdon, 1962) or induced pluripotent stem cells (iPSCs) (Takahashi and Yamanaka, 2006). The DNA methylation and transcriptome profiles of embryonic stern cells (ESCs) derived from SCNT embryos (NT-ESCs) correspond closely to those of ESCs derived from in vitro fertilization embryos (IVF- ESCs). In contrast, iPSCs differ from both NT-ESCs and IVF-ESCs in that they retain the residual DNA methylation patterns of their parental somatic cells. As SCNT can be used to faithfully reprogram human somatic cells to pluripotency, it is ideal for cell replacement therapies (Ma et al., 2014). Following the successful production of the first human NT-ESCs (Tachibana et al., 2013) and the later gen- eration of human NT-ESCs based on cells from elderly adults or pa- tient cells (Chung et al., 2014; Yamada et al., 2014), a version of the SCNT technique for human therapeutics comes closer to reality. However, no matter what animal species or donor cell types are used in the cloned process, the cloning efficiency remains undesir- able. Besides, there are many phenotypic abnormalities in cloned animals, containing frequent embryonic and perinatal death and placentomegaly, and the underlying mechanisms remain unclear (Yang et al, 2007).展开更多
基金supported by grants from the National Natural Science Foundation of China(No.31471395)to Q.Z.the Key Research Projects of the Frontier Science of the Chinese Academy of Sciences(QYZDY-SSW-SMC002)to Q.Z
文摘In mammalians, the state of a somatic cell can be reversed from the terminal state to the totipotent state by means of somatic cell nuclear transfer (SCNT) (Gurdon, 1962) or induced pluripotent stem cells (iPSCs) (Takahashi and Yamanaka, 2006). The DNA methylation and transcriptome profiles of embryonic stern cells (ESCs) derived from SCNT embryos (NT-ESCs) correspond closely to those of ESCs derived from in vitro fertilization embryos (IVF- ESCs). In contrast, iPSCs differ from both NT-ESCs and IVF-ESCs in that they retain the residual DNA methylation patterns of their parental somatic cells. As SCNT can be used to faithfully reprogram human somatic cells to pluripotency, it is ideal for cell replacement therapies (Ma et al., 2014). Following the successful production of the first human NT-ESCs (Tachibana et al., 2013) and the later gen- eration of human NT-ESCs based on cells from elderly adults or pa- tient cells (Chung et al., 2014; Yamada et al., 2014), a version of the SCNT technique for human therapeutics comes closer to reality. However, no matter what animal species or donor cell types are used in the cloned process, the cloning efficiency remains undesir- able. Besides, there are many phenotypic abnormalities in cloned animals, containing frequent embryonic and perinatal death and placentomegaly, and the underlying mechanisms remain unclear (Yang et al, 2007).