期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Nitrogen Removal Improvement by Adding Peat in Deep Soil of Subsurface Wastewater Infi ltration System 被引量:6
1
作者 CHEN Pei-zhen CUI Jian-yu +4 位作者 HU Lin ZHENG Miao-zhuang CHENG Shan-ping HUANG Jie-wen MU Kang-guo 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第5期1113-1120,共8页
In order to enhance the nitrogen removal, a subsurface wastewater infiltration system (SWIS) was improved by adding peat in deep soil as carbon source for denitrification process. The effects of addition of carbon s... In order to enhance the nitrogen removal, a subsurface wastewater infiltration system (SWIS) was improved by adding peat in deep soil as carbon source for denitrification process. The effects of addition of carbon source in the underpart of the SWIS on nitrogen removal at different influents (with the total nitrogen (TN) concentration 40 and 80 mg L^-1, respectively) were investigated by soil column simulating experiments. When the relatively light pollution influent with 40 mg L^-1 TN was used, the average concentrations of NO3-N and TN in effluents were (4.69±0.235), (6.18±0.079) mg L^-1, respectively, decreased by 32 and 30.8% than the control; the NO3--N concentration of all effluents was below the maximum contaminant level of 10 mg L^-1; as high as 92.67% of the TN removal efficiency was achieved. When relatively heavy pollution influent with 80 mg LITN was used, the average concentrations of NO3--N and TN in effluents were (10.2±0.265), (12.5±0.148) mg L^-1 respectively, decreased by 20 and 21.2% than the control; the NO3--N concentration of all effluents met the grade Ⅲ of the national quality standard for ground water of China (GB/T 14848-1993) with the values less than 20 mg L^-1; the TN removal efficiency of 94.1% was achieved. In summary, adding peat in the underpart of the SWIS significantly decreased TN and NO3- -N concentration in effluents and the nitrogen removal efficiency improved significantly. 展开更多
关键词 peat addition nitrogen removal efficiency DENITRIFICATION subsurface wastewater infiltration system
下载PDF
Nitrogen Removal Efficiencies for Two Biological Nutrient Removal (BNR) Plants in Thailand: Molasses as an External Carbon Source for Enriched Denitrifying Culture in a BNR Process 被引量:1
2
作者 P.L. Noophan P. Pajorn +2 位作者 S. Sirivithayapakorn M. Damrongsri C. Wantawin 《Journal of Environmental Science and Engineering》 2011年第10期1245-1251,共7页
Two biological nutrient removal (BNR) wastewater treatment plants (WWTPs) in Thailand were selected for study: the Nonghkaem WWTP and the Suvarnabhumi Airport WWTP. For each site the influents, effluents, and sup... Two biological nutrient removal (BNR) wastewater treatment plants (WWTPs) in Thailand were selected for study: the Nonghkaem WWTP and the Suvarnabhumi Airport WWTP. For each site the influents, effluents, and supernatant liquids from anaerobic sludge digesters were analyzed for total Kjeldahl nitrogen (TKN), total nitrogen (TN), total chemical oxygen demand (TCOD), biodegradable chemical oxygen demand (bCOD), and biochemical oxygen demand (BOD). Nitrogen removal efficiencies in the Nonghkaem WWTP and the Suvarnabhumi Airport WWTP were evaluated. Inadequate nitrogen removal at the Nonghkaem centralized WWTP was found during the summer period. Influent ratios of bCOD:N at the Nonghkaem plant and the Suvarnabhumi Airport plant were 2.42:1-5.45:1 and 4.1:1-6.5:1, respectively. The efficacy of addition of molasses as a carbon source for enriched denitrifying culture in a BNR process at Nonghkaem was studied. Fluorescent in situ hybridization technique (FISH) was used to identify specific nitrifying bacteria (Nitrosomonas spp., Nitrobacter spp. and Nitrospira spp.). Nitrospira spp. was the most prevalent species in the aeration tank at the Nonghkaem WWTP. This result from FISH suggests that there were significantly low oxygen and nitrite concentration in the aeration tank at the Nonghkaem WWTP during a period of low nitrogen removal. 展开更多
关键词 nitrogen removal efficiency biological nutrient removal Thailand
下载PDF
Effects of live rock on removal of dissolved inorganic nitrogen in coral aquaria 被引量:1
3
作者 LI Yan ZHENG Xinqing +3 位作者 YANG Xiaozhou OU Dangyun LIN Rongcheng LIU Xinming 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第12期87-94,共8页
Maintaining stable water quality is one of the key processes for recirculating coral aquaculture. Traditional aquarium systems which mainly utilized a nitrification of nitrifying bacteria attached to the surface of ma... Maintaining stable water quality is one of the key processes for recirculating coral aquaculture. Traditional aquarium systems which mainly utilized a nitrification of nitrifying bacteria attached to the surface of massive artificial filter material are difficult to maintain the oligotrophic conditions necessary for coral aquaculture. This study investigated the removal effects of dissolved inorganic nitrogen(ammonia and nitrate) by live rock(LR), a key component in the "Berlin system" coral aquarium. The expression levels of bacterial functional genes, AOA3,amo A and nos Z, were measured on the exterior and interior of LR. The nitrifying and denitrifying bacterial abundance on LR was quantified and the nitrogen nutrient regulatory effects of LR were evaluated. The results demonstrated that LR mainly removed ammonium(NH_4~+) from the water with a mean efficiency of 0.141 mg/(kg·h), while the removal of nitrate(NO_3~–) was not significant. Bacterial diversity analysis showed that ammonia-oxidizing bacteria(AOB) were the most common bacteria on LR, which accounted for 0.5%–1.4% of the total bacterial population, followed by denitrifying bacteria, which accounted for 0.2% of the total population, and the ammonia-oxidizing archaea(AOA) were the least common type(〈0.01%). The low abundance of denitrifying bacteria may be responsible for the poor nitrate(NO_3~–) removal of LR. Thus, other biological filtration methods are needed in coral aquaria to control nitrates generated from nitrification or biological metabolism. 展开更多
关键词 coral live rock water purification dissolved inorganic nitrogen removal efficiency
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部