期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Numerical simulation of dust distribution at a fully mechanized face under the isolation effect of an air curtain 被引量:19
1
作者 Wang Pengfei Feng Tao Liu Ronghua 《Mining Science and Technology》 EI CAS 2011年第1期65-69,共5页
At a fully mechanized working face of a coal mine as prototype,we investigated,by simulation,the flow field and dust distribution during the process of its isolation by a curtain of air,using the CFD software, Fluent.... At a fully mechanized working face of a coal mine as prototype,we investigated,by simulation,the flow field and dust distribution during the process of its isolation by a curtain of air,using the CFD software, Fluent.The results show that the air curtain installed on the shearer can effectively prevent the dust (especially the respirable dust)from diffusing into the work area of the operator,reducing the dust concentration on the side of the operator and greatly improving his working environment.The field application of the air curtain shows that the dust-isolation effect of an air curtain is quite noticeable.The isolation efficiency for respiratory dust is over 70%and,as well,it has good dust-isolation effect for nonrespiratory dust.The air curtain is a useful way to resolve the problem of dust-isolation at a fully mechanized working face.It has a practical background elsewhere with more extensive applications. 展开更多
关键词 Fully mechanized face Air curtain Dust distribution numerical simulation Dust-isolation efficiency
下载PDF
Efficiency analysis of numerical integrations for finite element substructure in real-time hybrid simulation 被引量:5
2
作者 Wang Jinting Lu Liqiao Zhu Fei 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第1期73-86,共14页
Finite element(FE) is a powerful tool and has been applied by investigators to real-time hybrid simulations(RTHSs). This study focuses on the computational efficiency, including the computational time and accuracy... Finite element(FE) is a powerful tool and has been applied by investigators to real-time hybrid simulations(RTHSs). This study focuses on the computational efficiency, including the computational time and accuracy, of numerical integrations in solving FE numerical substructure in RTHSs. First, sparse matrix storage schemes are adopted to decrease the computational time of FE numerical substructure. In this way, the task execution time(TET) decreases such that the scale of the numerical substructure model increases. Subsequently, several commonly used explicit numerical integration algorithms, including the central difference method(CDM), the Newmark explicit method, the Chang method and the Gui-λ method, are comprehensively compared to evaluate their computational time in solving FE numerical substructure. CDM is better than the other explicit integration algorithms when the damping matrix is diagonal, while the Gui-λ(λ = 4) method is advantageous when the damping matrix is non-diagonal. Finally, the effect of time delay on the computational accuracy of RTHSs is investigated by simulating structure-foundation systems. Simulation results show that the influences of time delay on the displacement response become obvious with the mass ratio increasing, and delay compensation methods may reduce the relative error of the displacement peak value to less than 5% even under the large time-step and large time delay. 展开更多
关键词 real-time hybrid simulation computational efficiency numerical integration storage optimization time delay
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部