Silver carp(Hypophthalmichthys molitrix),bighead carp(Aristichthys nobilis),grass carp(Ctenopharyngodon idella),and black carp(Mylopharyngodon piceus) are the four major Chinese carps and are commercially important aq...Silver carp(Hypophthalmichthys molitrix),bighead carp(Aristichthys nobilis),grass carp(Ctenopharyngodon idella),and black carp(Mylopharyngodon piceus) are the four major Chinese carps and are commercially important aquaculture species in China.Reproduction of these carp has declined since the construction of the Three Gorges Dam(TGD) due to an altered water flow and thermal regime in the Changjiang(Yangtze) River.However,details of the changes in reproduction of the four species are not well understood.To assess the impact of the TGD on reproduction of the four carp,we investigated their eggs and larvae at Yidu City,which is 80 km below the TGD,during 2005-2012.We examined differences in larval abundance of the four species in the Jianli section(350 km downstream of the TGD) before(1997-2002)and after(2003-2012) construction of the TGD.Based on these observations,the first spawning date of the four species was delayed a mean of about 25 days after the dam was constructed.Mean egg abundance in the Yidu section of the river was 249 million and mean larval abundance was 464 million,which were significant decreases since the 1980 s.Moreover,larval abundance in the Jianli section after the dam was constructed was significantly lower than that before construction(ANCOVA,P<0.05).The observed larval abundance accounted for only 24.66%of the predicted value in 2003 when the dam was first inundated.The present spawning grounds between the TGD and Yidu section of the river are very similar to those described in the 1980 s,and some spawning grounds exist upstream of the TGD.Large free-flowing stretches upstream of the TGD and the creation of artificially flooded downstream reaches are needed to stimulate spawning and effectively conserve these four major Chinese carps species.展开更多
The oil spill impact analysis (OSIA) software system has been developed to supply a tool for comprehensive, quantitative environmental impact assessments resulting from oil spills. In the system, a biological componen...The oil spill impact analysis (OSIA) software system has been developed to supply a tool for comprehensive, quantitative environmental impact assessments resulting from oil spills. In the system, a biological component evaluates potential effects on exposed organisms based on results from a physico chemical fates component, including the extent and characteristics of the surface slick, and dissolved and total concentrations of hydrocarbons in the water column. The component includes a particle based exposure model for migratory adult fish populations, a particle based exposure model for spawning planktonic organisms (eggs and larvae), and an exposure model for wildlife species (sea birds or marine mammals). The exposure model for migratory adult fish populations simulates the migration behaviors of fish populations migrating to or staying in their feeding areas, over wintering areas or spawning areas, and determines the acute effects (mortality) and chronic accumulation (body burdens) from the dissolved contaminant. The exposure model for spawning planktonic organisms simulates the release of eggs and larvae, also as particles, from specific spawning areas during the spawning period, and determines their potential exposure to contaminants in the water or sediment. The exposure model for wild species calculates the exposure to surface oil of wildlife (bird and marine mammal) categories inhabiting the contaminated area. Compared with the earlier models in which all kinds of organisms are assumed evenly and randomly distributed, the updated biological exposure models can more realistically estimate potential effects on marine ecological system from oil spill pollution events.展开更多
基金Supported by the Three Gorges Project Eco-Environmental Monitoring System(No.JJ[2015]-010)the China Three Gorges Corporation(No.0704097,0799533)
文摘Silver carp(Hypophthalmichthys molitrix),bighead carp(Aristichthys nobilis),grass carp(Ctenopharyngodon idella),and black carp(Mylopharyngodon piceus) are the four major Chinese carps and are commercially important aquaculture species in China.Reproduction of these carp has declined since the construction of the Three Gorges Dam(TGD) due to an altered water flow and thermal regime in the Changjiang(Yangtze) River.However,details of the changes in reproduction of the four species are not well understood.To assess the impact of the TGD on reproduction of the four carp,we investigated their eggs and larvae at Yidu City,which is 80 km below the TGD,during 2005-2012.We examined differences in larval abundance of the four species in the Jianli section(350 km downstream of the TGD) before(1997-2002)and after(2003-2012) construction of the TGD.Based on these observations,the first spawning date of the four species was delayed a mean of about 25 days after the dam was constructed.Mean egg abundance in the Yidu section of the river was 249 million and mean larval abundance was 464 million,which were significant decreases since the 1980 s.Moreover,larval abundance in the Jianli section after the dam was constructed was significantly lower than that before construction(ANCOVA,P<0.05).The observed larval abundance accounted for only 24.66%of the predicted value in 2003 when the dam was first inundated.The present spawning grounds between the TGD and Yidu section of the river are very similar to those described in the 1980 s,and some spawning grounds exist upstream of the TGD.Large free-flowing stretches upstream of the TGD and the creation of artificially flooded downstream reaches are needed to stimulate spawning and effectively conserve these four major Chinese carps species.
基金theChinaScholarshipCouncil (CSC)andOceanographicScientificFundsforYouthfromtheStateOceanographicAdministration (No .96 80 1)
文摘The oil spill impact analysis (OSIA) software system has been developed to supply a tool for comprehensive, quantitative environmental impact assessments resulting from oil spills. In the system, a biological component evaluates potential effects on exposed organisms based on results from a physico chemical fates component, including the extent and characteristics of the surface slick, and dissolved and total concentrations of hydrocarbons in the water column. The component includes a particle based exposure model for migratory adult fish populations, a particle based exposure model for spawning planktonic organisms (eggs and larvae), and an exposure model for wildlife species (sea birds or marine mammals). The exposure model for migratory adult fish populations simulates the migration behaviors of fish populations migrating to or staying in their feeding areas, over wintering areas or spawning areas, and determines the acute effects (mortality) and chronic accumulation (body burdens) from the dissolved contaminant. The exposure model for spawning planktonic organisms simulates the release of eggs and larvae, also as particles, from specific spawning areas during the spawning period, and determines their potential exposure to contaminants in the water or sediment. The exposure model for wild species calculates the exposure to surface oil of wildlife (bird and marine mammal) categories inhabiting the contaminated area. Compared with the earlier models in which all kinds of organisms are assumed evenly and randomly distributed, the updated biological exposure models can more realistically estimate potential effects on marine ecological system from oil spill pollution events.