Array calibration is important in engineering practice. In this paper, fast calibration methods for a ULA's gain and phase errors both in far and near fields are proposed. In the far field, using a single sound so...Array calibration is important in engineering practice. In this paper, fast calibration methods for a ULA's gain and phase errors both in far and near fields are proposed. In the far field, using a single sound source without exact orientation, this method horizontally rotates the array exactly once, performs eigen value decomposition for the covariance matrix of received data, then computes the gain and phase error according to the formulas. In the near field, using the same single sound source, it is necessary to rotate the array horizontally at most three times, build equations according to geometric relations, then solve them. Using the formula proposed in this paper, spherical waves are modified into plane waves. Then eigen values decomposition is performed. These two calibration methods were shown to be valid by simulation and are fast, accurate and easy to use. Finally, an analysis of factors influencing estimation precision is given.展开更多
A new quasi-orthogonal space-time block code (QO-STBC) scheme, based on eigen value decomposition (EVD), is explored in this paper. The new scheme can significantly reduce the QO-STBC decoding complexity at receiv...A new quasi-orthogonal space-time block code (QO-STBC) scheme, based on eigen value decomposition (EVD), is explored in this paper. The new scheme can significantly reduce the QO-STBC decoding complexity at receiver and achieves better bit-error rate (BER) performance as well. With EVD manipulations, the detection matrix and the channel matrix can be redefined to remove all interference terms which come from other antennas, and therefore the conventional maximum likelihood (ML) decoding method with less complexity can be applied. Moreover the new scheme improves the BER performance significantly. Theoretical analysis and simulation results are presented in this paper to show the validation of this new scheme.展开更多
文摘Array calibration is important in engineering practice. In this paper, fast calibration methods for a ULA's gain and phase errors both in far and near fields are proposed. In the far field, using a single sound source without exact orientation, this method horizontally rotates the array exactly once, performs eigen value decomposition for the covariance matrix of received data, then computes the gain and phase error according to the formulas. In the near field, using the same single sound source, it is necessary to rotate the array horizontally at most three times, build equations according to geometric relations, then solve them. Using the formula proposed in this paper, spherical waves are modified into plane waves. Then eigen values decomposition is performed. These two calibration methods were shown to be valid by simulation and are fast, accurate and easy to use. Finally, an analysis of factors influencing estimation precision is given.
文摘A new quasi-orthogonal space-time block code (QO-STBC) scheme, based on eigen value decomposition (EVD), is explored in this paper. The new scheme can significantly reduce the QO-STBC decoding complexity at receiver and achieves better bit-error rate (BER) performance as well. With EVD manipulations, the detection matrix and the channel matrix can be redefined to remove all interference terms which come from other antennas, and therefore the conventional maximum likelihood (ML) decoding method with less complexity can be applied. Moreover the new scheme improves the BER performance significantly. Theoretical analysis and simulation results are presented in this paper to show the validation of this new scheme.