The completeness theorem of the eigenfunction systems for the product of two 2 × 2 symmetric operator matrices is proved. The result is applied to 4 × 4 infinite-dimensional Hamiltonian operators. A modified...The completeness theorem of the eigenfunction systems for the product of two 2 × 2 symmetric operator matrices is proved. The result is applied to 4 × 4 infinite-dimensional Hamiltonian operators. A modified method of separation of variables is proposed for a separable Hamiltonian system. As an application of the theorem, the general solutions for the plate bending equation and the free vibration of rectangular thin plates are obtained. Finally, a numerical test is analysed to show the correctness of the results.展开更多
The properties of eigenvalues and eigenfunctions of the infinite dimensional Hamiltonian operators are studied, and the sufficient conditions of the completeness in the sense of Cauchy principal value of the eigenfunc...The properties of eigenvalues and eigenfunctions of the infinite dimensional Hamiltonian operators are studied, and the sufficient conditions of the completeness in the sense of Cauchy principal value of the eigenfunction systems of the infinite dimensional Hamiltonian operators are given. In the end, concrete examples are constructed to justify the effectiveness of the criterion.展开更多
The eigenfunction system of infinite-dimensional Hamiltonian operators appearing in the bending problem of rectangular plate with two opposites simply supported is studied. At first, the completeness of the extended e...The eigenfunction system of infinite-dimensional Hamiltonian operators appearing in the bending problem of rectangular plate with two opposites simply supported is studied. At first, the completeness of the extended eigenfunction system in the sense of Cauchy's principal value is proved. Then the incompleteness of the extended eigenfunction system in general sense is proved. So the completeness of the symplectic orthogonal system of the infinite-dimensional Hamiltonian operator of this kind of plate bending equation is proved. At last the general solution of the infinite dimensional Hamiltonian system is equivalent to the solution function system series expansion, so it gives to theoretical basis of the methods of separation of variables based on Hamiltonian system for this kind of equations.展开更多
The free vibration problem of rectangular thin plates is rewritten as a new upper triangular matrix differential system. For the associated operator matrix, we find that the two diagonal block operators are Hamiltonia...The free vibration problem of rectangular thin plates is rewritten as a new upper triangular matrix differential system. For the associated operator matrix, we find that the two diagonal block operators are Hamiltonian. Moreover, the existence and completeness of normed symplectic orthogonal eigenfunction systems of these two block operators are demonstrated. Based on the completeness, the general solution of the free vibration of rectangular thin plates is given by double symplectie eigenfunction expansion method.展开更多
This paper deals with off-diagonal operator matrices and their applications in elasticity theory. Two kinds of completeness of the system of eigenvectors are proven, in terms of those of the compositions of two block ...This paper deals with off-diagonal operator matrices and their applications in elasticity theory. Two kinds of completeness of the system of eigenvectors are proven, in terms of those of the compositions of two block operators in the off-diagonal operator matrices. Using these results, the double eigenfunction expansion method for solving upper triangular matrix differential systems is proposed. Moreover, we apply the method to the two-dimensional elasticity problem and the problem of bending of rectangular thin plates on elastic foundation.展开更多
The eigenvalue problem of the Hamiltonian operator associated with plane elasticity problems is investigated.The eigenfunctions of the operator are directly solved with mixed boundary conditions for the displacement a...The eigenvalue problem of the Hamiltonian operator associated with plane elasticity problems is investigated.The eigenfunctions of the operator are directly solved with mixed boundary conditions for the displacement and stress in a rectangular region.The completeness of the eigenfunctions is then proved,providing the feasibility of using separation of variables to solve the problems.A general solution is obtained with the symplectic eigenfunction expansion theorem.展开更多
This paper deals with the bending problem of rectangular plates with two opposite edges simply supported. It is proved that there exists no normed symplectic orthogonal eigenfunction system for the associated infinite...This paper deals with the bending problem of rectangular plates with two opposite edges simply supported. It is proved that there exists no normed symplectic orthogonal eigenfunction system for the associated infinite-dimensional Hamiltonian operator H and that the two block operators belonging to Hamiltonian operator H possess two normed symplectic orthogonal eigenfunction systems in some space. It is demonstrated by using the properties of the block operators that the above bending problem can be solved by the symplectic eigenfunction expansion theorem, thereby obtaining analytical solutions of rectangular plates with two opposite edges simply supported and the other two edges supported in any manner.展开更多
The spheroidal wave functions are found to have extensive applications in many branches of physics and mathematics. We use the perturbation method in supersymmetric quantum mechanics to obtain the analytic ground eige...The spheroidal wave functions are found to have extensive applications in many branches of physics and mathematics. We use the perturbation method in supersymmetric quantum mechanics to obtain the analytic ground eigenvalue and the ground eigenfunction of the angular spheroidal wave equation at low frequency in a series form. Using this approach, the numerical determinations of the ground eigenvalue and the ground eigenfunction for small complex frequencies are also obtained.展开更多
This paper proposes an eigenfunction expansion method to solve twodimensional (2D) elasticity problems based on stress formulation. By introducing appropriate state functions, the fundamental system of partial diffe...This paper proposes an eigenfunction expansion method to solve twodimensional (2D) elasticity problems based on stress formulation. By introducing appropriate state functions, the fundamental system of partial differential equations of the above 2D problems is rewritten as an upper triangular differential system. For the associated operator matrix, the existence and the completeness of two normed orthogonal eigenfunction systems in some space are obtained, which belong to the two block operators arising in the operator matrix. Moreover, the general solution to the above 2D problem is given by the eigenfunction expansion method.展开更多
In this work we describe the algorithms to construct the skeletons, simplified 1D representations for a 3D surface depicted by a mesh of points, given the respective eigenfunctions of the Discrete Laplace-Beltrami Ope...In this work we describe the algorithms to construct the skeletons, simplified 1D representations for a 3D surface depicted by a mesh of points, given the respective eigenfunctions of the Discrete Laplace-Beltrami Operator (LBO). These functions are isometry invariant, so they are independent of the object’s representation including parameterization, spatial position and orientation. Several works have shown that these eigenfunctions provide topological and geometrical information of the surfaces of interest [1] [2]. We propose to make use of that information for the construction of a set of skeletons, associated to each eigenfunction, which can be used as a fingerprint for the surface of interest. The main goal is to develop a classification system based on these skeletons, instead of the surfaces, for the analysis of medical images, for instance.展开更多
We consider the following eigenvalue problem: [GRAPHICS] Where f(x, t) is a continuous function with critical growth. We prove the existence of nontrivial solutions.
It is not convenient to solve those engineering problems defined in an infinite field by using FEM. An infinite area can be divided into a regular infinite external area and a finite internal area. The finite internal...It is not convenient to solve those engineering problems defined in an infinite field by using FEM. An infinite area can be divided into a regular infinite external area and a finite internal area. The finite internal area was dealt with by the FEM and the regular infinite external area was settled in a polar coordinate. All governing equations were transformed into the Hamiltonian system. The methods of variable separation and eigenfunction expansion were used to derive the stiffness matrix of a new infinite analytical element.This new element, like a super finite element, can be combined with commonly used finite elements. The proposed method was verified by numerical case studies. The results show that the preparation work is very simple, the infinite analytical element has a high precision, and it can be used conveniently. The method can also be easily extended to a three-dimensional problem.展开更多
This paper is devoted to the application of branch mode method in the critical speed ana-lysis of compound rotating systems, in which the distributed inertia including gyroscopic effectand distributed elastic support ...This paper is devoted to the application of branch mode method in the critical speed ana-lysis of compound rotating systems, in which the distributed inertia including gyroscopic effectand distributed elastic support are taken into account. Finally, the method introduced in this paper is used to calculate the critical speeds of anew-type spindle on the spinning frame. The first three critical Speeds are calculated and com-pared with the values obtained from the experimental approach and other theoretical methods.The results show that they are in good agreement with each other.展开更多
In order to recover unknown space-dependent function G(x)or unknown time-dependent function H(t)in the wave source F(x;t)=G(x)H(t),we develop a technique of homogenized function and differencing equations,which can si...In order to recover unknown space-dependent function G(x)or unknown time-dependent function H(t)in the wave source F(x;t)=G(x)H(t),we develop a technique of homogenized function and differencing equations,which can significantly reduce the difficulty in the inverse wave source recovery problem,only needing to solve a few equations in the problem domain,since the initial condition/boundary conditions and a supplementary final time condition are satisfied automatically.As a consequence,the eigenfunctions are used to expand the trial solutions,and then a small scale linear system is solved to determine the expansion coefficients from the differencing equations.Because the ill-posedness of the inverse wave source problem is greatly reduced,the present method is accurate and stable against a large noise up to 50%,of which the numerical tests confirm the observation.展开更多
A new and simple method is developed to establish the pseudo orthogonal properties (POP) of the eigenfunction expansion form (EEF) of crack-tip stress complex potential functions for cracked anisotropic an...A new and simple method is developed to establish the pseudo orthogonal properties (POP) of the eigenfunction expansion form (EEF) of crack-tip stress complex potential functions for cracked anisotropic and piezoelectric materials, respectively. Di?erent from previous research, the complex argument separation technique is not required so that cumbersome manipulations are avoided. Moreover, it is shown, di?erent from the previous research too, that the orthogonal properties of the material characteristic matrices A and B are no longer necessary in obtaining the POP of EEF in cracked piezoelectric materials. Of the greatest signi?cance is that the method presented in this paper can be widely extended to treat many kinds of problems concerning path- independent integrals with multi-variables.展开更多
This letter proposes a new tomographic reconstruction procedure based on the Laplacian eigenfunction(LEF) patterns, which are independent of the plasma cross-section and do not require the flux surface information. Th...This letter proposes a new tomographic reconstruction procedure based on the Laplacian eigenfunction(LEF) patterns, which are independent of the plasma cross-section and do not require the flux surface information. The process is benchmarked for the experimental data of Heliotron J plasma and the results are compared with the least-squares approximation by a Phillips–Tikhonov(PT)-type regularization, which is widely used as the standard technique for tomographic reconstruction. The reconstruction based on the LEF is found to be capable of determining the magnetic axis at different time locations efficiently in comparison with the PT-type regularization.展开更多
Spin-weighted spheroidal wave functions play an important role in the study of the linear stability of rotating Kerr black holes and are studied by the perturbation method in supersymmetric quantum mechanics. Their an...Spin-weighted spheroidal wave functions play an important role in the study of the linear stability of rotating Kerr black holes and are studied by the perturbation method in supersymmetric quantum mechanics. Their analytic ground eigenvalues and eigenfunctions are obtained by means of a series in low frequency. The ground eigenvalue and eigenfunction for small complex frequencies are numerically determined.展开更多
The eigenvalue problem for the Hamiltonian operator associated with the mathematical model for the deflection of a thin elastic plate is investigated.First,the problem for a rectangular plate with simply supported edg...The eigenvalue problem for the Hamiltonian operator associated with the mathematical model for the deflection of a thin elastic plate is investigated.First,the problem for a rectangular plate with simply supported edges is solved directly.Then,the completeness of the eigenfunctions is proved,thereby demonstrating the feasibility of using separation of variables to solve the problem. Finally,the general solution is obtained by using the proved expansion theorem.展开更多
The structure of a Hamiltonian matrix for a quantum chaotic system, the nuclear octupole deformation model, has been discussed in detail. The distribution of the eigenfunctions of this system expanded by the eigenstat...The structure of a Hamiltonian matrix for a quantum chaotic system, the nuclear octupole deformation model, has been discussed in detail. The distribution of the eigenfunctions of this system expanded by the eigenstates of a quantum integrable system is studied with the help of generalized Brillouin?Wigner perturbation theory. The results show that a significant randomness in this distribution can be observed when its classical counterpart is under the strong chaotic condition. The averaged shape of the eigenfunctions fits with the Gaussian distribution only when the effects of the symmetry have been removed.展开更多
This paper studies the eigenfunction expansion method to solve the two dimensional (2D) elasticity problems based on the stress formulation. The fundamental system of partial differential equations of the 2D problem...This paper studies the eigenfunction expansion method to solve the two dimensional (2D) elasticity problems based on the stress formulation. The fundamental system of partial differential equations of the 2D problems is rewritten as an upper tri angular differential system based on the known results, and then the associated upper triangular operator matrix matrix is obtained. By further research, the two simpler com plete orthogonal systems of eigenfunctions in some space are obtained, which belong to the two block operators arising in the operator matrix. Then, a more simple and conve nient general solution to the 2D problem is given by the eigenfunction expansion method. Furthermore, the boundary conditions for the 2D problem, which can be solved by this method, are indicated. Finally, the validity of the obtained results is verified by a specific example.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 10962004)the Natural Science Foundation of Inner Mongolia Autonomous Region of China (Grant No. 20080404MS0104)
文摘The completeness theorem of the eigenfunction systems for the product of two 2 × 2 symmetric operator matrices is proved. The result is applied to 4 × 4 infinite-dimensional Hamiltonian operators. A modified method of separation of variables is proposed for a separable Hamiltonian system. As an application of the theorem, the general solutions for the plate bending equation and the free vibration of rectangular thin plates are obtained. Finally, a numerical test is analysed to show the correctness of the results.
基金supported by the National Natural Science Foundation of China (Grant No. 10562002)Colleges and Universities Doctoral Subject Research Funds (Grant No. 20070126002)the Natural Science Foundation of Inner Mongolia (Grant No. 200508010103)
文摘The properties of eigenvalues and eigenfunctions of the infinite dimensional Hamiltonian operators are studied, and the sufficient conditions of the completeness in the sense of Cauchy principal value of the eigenfunction systems of the infinite dimensional Hamiltonian operators are given. In the end, concrete examples are constructed to justify the effectiveness of the criterion.
基金Supported by the National Natural Science Foundation of China under Grant No. 10962004the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20070126002
文摘The eigenfunction system of infinite-dimensional Hamiltonian operators appearing in the bending problem of rectangular plate with two opposites simply supported is studied. At first, the completeness of the extended eigenfunction system in the sense of Cauchy's principal value is proved. Then the incompleteness of the extended eigenfunction system in general sense is proved. So the completeness of the symplectic orthogonal system of the infinite-dimensional Hamiltonian operator of this kind of plate bending equation is proved. At last the general solution of the infinite dimensional Hamiltonian system is equivalent to the solution function system series expansion, so it gives to theoretical basis of the methods of separation of variables based on Hamiltonian system for this kind of equations.
基金Supported by the National Natural Science Foundation of China under Grant No.10962004the Natural Science Foundation of Inner Mongolia under Grant No.2009BS0101+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No.20070126002the Cultivation of Innovative Talent of "211 Project"of Inner Mongolia University
文摘The free vibration problem of rectangular thin plates is rewritten as a new upper triangular matrix differential system. For the associated operator matrix, we find that the two diagonal block operators are Hamiltonian. Moreover, the existence and completeness of normed symplectic orthogonal eigenfunction systems of these two block operators are demonstrated. Based on the completeness, the general solution of the free vibration of rectangular thin plates is given by double symplectie eigenfunction expansion method.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10962004 and 11061019)the Doctoral Foundation of Inner Mongolia(Grant Nos.2009BS0101 and 2010MS0110)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20070126002)the Chunhui Program of the Ministry of Education of China(Grant No.Z2009-1-01010)
文摘This paper deals with off-diagonal operator matrices and their applications in elasticity theory. Two kinds of completeness of the system of eigenvectors are proven, in terms of those of the compositions of two block operators in the off-diagonal operator matrices. Using these results, the double eigenfunction expansion method for solving upper triangular matrix differential systems is proposed. Moreover, we apply the method to the two-dimensional elasticity problem and the problem of bending of rectangular thin plates on elastic foundation.
基金supported by the National Natural Science Foundation of China(No.10962004)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20070126002)the Natural Science Foundation of Inner Mongolia of China(No.20080404MS0104)
文摘The eigenvalue problem of the Hamiltonian operator associated with plane elasticity problems is investigated.The eigenfunctions of the operator are directly solved with mixed boundary conditions for the displacement and stress in a rectangular region.The completeness of the eigenfunctions is then proved,providing the feasibility of using separation of variables to solve the problems.A general solution is obtained with the symplectic eigenfunction expansion theorem.
基金supported by the National Natural Science Foundation of China(Grant No 10562002)the Natural Science Foundation of Inner Mongolia,China(Grants No 200508010103 and 200711020106)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No 20070126002)
文摘This paper deals with the bending problem of rectangular plates with two opposite edges simply supported. It is proved that there exists no normed symplectic orthogonal eigenfunction system for the associated infinite-dimensional Hamiltonian operator H and that the two block operators belonging to Hamiltonian operator H possess two normed symplectic orthogonal eigenfunction systems in some space. It is demonstrated by using the properties of the block operators that the above bending problem can be solved by the symplectic eigenfunction expansion theorem, thereby obtaining analytical solutions of rectangular plates with two opposite edges simply supported and the other two edges supported in any manner.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10875018 and 10773002)
文摘The spheroidal wave functions are found to have extensive applications in many branches of physics and mathematics. We use the perturbation method in supersymmetric quantum mechanics to obtain the analytic ground eigenvalue and the ground eigenfunction of the angular spheroidal wave equation at low frequency in a series form. Using this approach, the numerical determinations of the ground eigenvalue and the ground eigenfunction for small complex frequencies are also obtained.
基金Project supported by the National Natural Science Foundation of China (No. 10962004)the Special-ized Research Fund for the Doctoral Program of Higher Education of China (No. 20070126002)+1 种基金the Chunhui Program of Ministry of Education of China (No. Z2009-1-01010)the Natural Science Foundation of Inner Mongolia (No. 2009BS0101)
文摘This paper proposes an eigenfunction expansion method to solve twodimensional (2D) elasticity problems based on stress formulation. By introducing appropriate state functions, the fundamental system of partial differential equations of the above 2D problems is rewritten as an upper triangular differential system. For the associated operator matrix, the existence and the completeness of two normed orthogonal eigenfunction systems in some space are obtained, which belong to the two block operators arising in the operator matrix. Moreover, the general solution to the above 2D problem is given by the eigenfunction expansion method.
文摘In this work we describe the algorithms to construct the skeletons, simplified 1D representations for a 3D surface depicted by a mesh of points, given the respective eigenfunctions of the Discrete Laplace-Beltrami Operator (LBO). These functions are isometry invariant, so they are independent of the object’s representation including parameterization, spatial position and orientation. Several works have shown that these eigenfunctions provide topological and geometrical information of the surfaces of interest [1] [2]. We propose to make use of that information for the construction of a set of skeletons, associated to each eigenfunction, which can be used as a fingerprint for the surface of interest. The main goal is to develop a classification system based on these skeletons, instead of the surfaces, for the analysis of medical images, for instance.
文摘We consider the following eigenvalue problem: [GRAPHICS] Where f(x, t) is a continuous function with critical growth. We prove the existence of nontrivial solutions.
文摘It is not convenient to solve those engineering problems defined in an infinite field by using FEM. An infinite area can be divided into a regular infinite external area and a finite internal area. The finite internal area was dealt with by the FEM and the regular infinite external area was settled in a polar coordinate. All governing equations were transformed into the Hamiltonian system. The methods of variable separation and eigenfunction expansion were used to derive the stiffness matrix of a new infinite analytical element.This new element, like a super finite element, can be combined with commonly used finite elements. The proposed method was verified by numerical case studies. The results show that the preparation work is very simple, the infinite analytical element has a high precision, and it can be used conveniently. The method can also be easily extended to a three-dimensional problem.
文摘This paper is devoted to the application of branch mode method in the critical speed ana-lysis of compound rotating systems, in which the distributed inertia including gyroscopic effectand distributed elastic support are taken into account. Finally, the method introduced in this paper is used to calculate the critical speeds of anew-type spindle on the spinning frame. The first three critical Speeds are calculated and com-pared with the values obtained from the experimental approach and other theoretical methods.The results show that they are in good agreement with each other.
文摘In order to recover unknown space-dependent function G(x)or unknown time-dependent function H(t)in the wave source F(x;t)=G(x)H(t),we develop a technique of homogenized function and differencing equations,which can significantly reduce the difficulty in the inverse wave source recovery problem,only needing to solve a few equations in the problem domain,since the initial condition/boundary conditions and a supplementary final time condition are satisfied automatically.As a consequence,the eigenfunctions are used to expand the trial solutions,and then a small scale linear system is solved to determine the expansion coefficients from the differencing equations.Because the ill-posedness of the inverse wave source problem is greatly reduced,the present method is accurate and stable against a large noise up to 50%,of which the numerical tests confirm the observation.
基金Project supported by the Natural Science Foundation of Shaanxi Province (No.2002A18) and the Doctorate Foundation of Xi’an Jiao-Tong University.
文摘A new and simple method is developed to establish the pseudo orthogonal properties (POP) of the eigenfunction expansion form (EEF) of crack-tip stress complex potential functions for cracked anisotropic and piezoelectric materials, respectively. Di?erent from previous research, the complex argument separation technique is not required so that cumbersome manipulations are avoided. Moreover, it is shown, di?erent from the previous research too, that the orthogonal properties of the material characteristic matrices A and B are no longer necessary in obtaining the POP of EEF in cracked piezoelectric materials. Of the greatest signi?cance is that the method presented in this paper can be widely extended to treat many kinds of problems concerning path- independent integrals with multi-variables.
基金performed under the auspices of the NIFS Bilateral Collaboration Research Program (NIFS10KUHL037)partly supported by Grant-in-aid for Scientific Research (B) 18H01202 from the Japan Society for the Promotion of Science (JSPS) and JSPS-CAS Joint Research Program, Grant number JPJSBP120197202supported by JSPS Core-to-Core Program A. Advanced Research Networks,'PLADyS'。
文摘This letter proposes a new tomographic reconstruction procedure based on the Laplacian eigenfunction(LEF) patterns, which are independent of the plasma cross-section and do not require the flux surface information. The process is benchmarked for the experimental data of Heliotron J plasma and the results are compared with the least-squares approximation by a Phillips–Tikhonov(PT)-type regularization, which is widely used as the standard technique for tomographic reconstruction. The reconstruction based on the LEF is found to be capable of determining the magnetic axis at different time locations efficiently in comparison with the PT-type regularization.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10875018 and 10773002)
文摘Spin-weighted spheroidal wave functions play an important role in the study of the linear stability of rotating Kerr black holes and are studied by the perturbation method in supersymmetric quantum mechanics. Their analytic ground eigenvalues and eigenfunctions are obtained by means of a series in low frequency. The ground eigenvalue and eigenfunction for small complex frequencies are numerically determined.
基金supported by the National Natural Science Foundation of China(Grant No.10962004)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20070126002)+1 种基金the Natural Science Foundation of Inner Mongolia(Grant No. 20080404MS0104)the Research Foundation for Talented Scholars of Inner Mongolia University(Grant No. 207066)
文摘The eigenvalue problem for the Hamiltonian operator associated with the mathematical model for the deflection of a thin elastic plate is investigated.First,the problem for a rectangular plate with simply supported edges is solved directly.Then,the completeness of the eigenfunctions is proved,thereby demonstrating the feasibility of using separation of variables to solve the problem. Finally,the general solution is obtained by using the proved expansion theorem.
文摘The structure of a Hamiltonian matrix for a quantum chaotic system, the nuclear octupole deformation model, has been discussed in detail. The distribution of the eigenfunctions of this system expanded by the eigenstates of a quantum integrable system is studied with the help of generalized Brillouin?Wigner perturbation theory. The results show that a significant randomness in this distribution can be observed when its classical counterpart is under the strong chaotic condition. The averaged shape of the eigenfunctions fits with the Gaussian distribution only when the effects of the symmetry have been removed.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20070126002)the National Natural Science Foundation of China (No. 10962004)
文摘This paper studies the eigenfunction expansion method to solve the two dimensional (2D) elasticity problems based on the stress formulation. The fundamental system of partial differential equations of the 2D problems is rewritten as an upper tri angular differential system based on the known results, and then the associated upper triangular operator matrix matrix is obtained. By further research, the two simpler com plete orthogonal systems of eigenfunctions in some space are obtained, which belong to the two block operators arising in the operator matrix. Then, a more simple and conve nient general solution to the 2D problem is given by the eigenfunction expansion method. Furthermore, the boundary conditions for the 2D problem, which can be solved by this method, are indicated. Finally, the validity of the obtained results is verified by a specific example.