期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
A Note on Laplacian Eigenmaps
1
作者 潘荣英 张晓东 《Journal of Shanghai Jiaotong university(Science)》 EI 2009年第5期632-634,共3页
In this note,we show that the image of Laplcian eigenmap in 2-dimensional Edclidean space is lied in a parabola.
关键词 GRAPH Laplacian eigenmap EIGENVECTORS
原文传递
一种基于非线性流形学习的故障特征提取模型 被引量:15
2
作者 蒋全胜 李华荣 黄鹏 《振动与冲击》 EI CSCD 北大核心 2012年第23期132-136,共5页
流形学习作为一种挖掘高维非线性数据内在几何分布特征的有效方法,可用于故障信号的特征提取。针对机械故障诊断中的非线性、故障征兆复杂的诊断问题,提出一种基于非线性流形学习的故障特征提取模型。该模型针对采集样本的不同处理情形... 流形学习作为一种挖掘高维非线性数据内在几何分布特征的有效方法,可用于故障信号的特征提取。针对机械故障诊断中的非线性、故障征兆复杂的诊断问题,提出一种基于非线性流形学习的故障特征提取模型。该模型针对采集样本的不同处理情形,分别运用Laplacian Eigenmaps算法及其增量、监督算法,进行故障样本的特征提取与分类,由于采用非线性的维数约简方式,极大地保留了故障信号中的整体几何结构信息,增强了故障模式识别的分类性能。最后通过工程实例应用,表明了所提特征提取模型的可行性和有效性。 展开更多
关键词 非线性流形学习 特征提取 故障诊断 LAPLACIAN eigenmaps算法
下载PDF
局部规则嵌入 被引量:1
3
作者 谭璐 吴翊 《计算机应用》 CSCD 北大核心 2005年第4期817-819,共3页
引入了拓扑结构和规则拓扑结构的概念,为了寻求具有规则拓扑结构的低维数据集,构 造了拓扑结构规则性的度量,提出了保持数据集拓扑结构的局部规则嵌入方法。与LocallyLinear Embedding,LaplacianEigenmap等核特征映射方法相比,低维... 引入了拓扑结构和规则拓扑结构的概念,为了寻求具有规则拓扑结构的低维数据集,构 造了拓扑结构规则性的度量,提出了保持数据集拓扑结构的局部规则嵌入方法。与LocallyLinear Embedding,LaplacianEigenmap等核特征映射方法相比,低维嵌入结果是近似规则的,与数据分类有 着更加自然的联系。最后的实例表明,与LLE和LaplacianEigenmap方法相比,该方法能更好地保持 数据集的类特性,揭示数据集的本征结构。 展开更多
关键词 拓扑结构 规则拓扑结构 LAPLACIAN Eigenmap
下载PDF
保持拓扑结构的低维嵌入
4
作者 刘红霞 谭璐 吴翊 《计算机应用与软件》 CSCD 北大核心 2007年第7期47-49,共3页
引入了拓扑邻域、拓扑结构和规则拓扑结构的概念。对拓扑邻域进行了理论分析,说明其是自适应的,随着维数的不断升高,趋于平凡拓扑邻域。为了寻求具有规则拓扑结构的低维数据集,构造了数据结构规则性的度量,提出了保持数据集拓扑结构不... 引入了拓扑邻域、拓扑结构和规则拓扑结构的概念。对拓扑邻域进行了理论分析,说明其是自适应的,随着维数的不断升高,趋于平凡拓扑邻域。为了寻求具有规则拓扑结构的低维数据集,构造了数据结构规则性的度量,提出了保持数据集拓扑结构不变的降维方法。该方法是节省参数的,降维结果是近似规则的。结果表明,它能更好的揭示数据集的结构。 展开更多
关键词 拓扑邻域 拓扑结构 规则的 LAPLACIAN eigenmap
下载PDF
几种流形学习算法的比较研究 被引量:4
5
作者 李小丽 薛清福 《电脑与信息技术》 2009年第3期14-18,共5页
如何发现高维数据空间流形中有意义的低维嵌入信息是流形学习的主要目的。目前,大部分流形学习算法都是用于非线性维数约简或是数据可视化的,如等距映射(Isomap),局部线性嵌入算法(LLE),拉普拉斯特征映射算法(laplacian Eigenmap)等等,... 如何发现高维数据空间流形中有意义的低维嵌入信息是流形学习的主要目的。目前,大部分流形学习算法都是用于非线性维数约简或是数据可视化的,如等距映射(Isomap),局部线性嵌入算法(LLE),拉普拉斯特征映射算法(laplacian Eigenmap)等等,文章对这三种流形学习算法进行实验分析与比较,目的在于了解这几种流形学习算法的特点,以便更好地进行数据的降维与分析。 展开更多
关键词 ISOMAP LLE LAPLACIAN Eigenmap
下载PDF
MODIFIED LAPLACIAN EIGENMAP ETHOD FOR FAULT DIAGNOSIS 被引量:9
6
作者 JIANG Quansheng JIA Minping +1 位作者 HU Jianzhong XU Feiyun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第3期90-93,共4页
A novel method based on the improved Laplacian eigenmap algorithm for fault pattern classification is proposed. Via modifying the Laplacian eigenmap algorithm to replace Euclidean distance with kernel-based geometric ... A novel method based on the improved Laplacian eigenmap algorithm for fault pattern classification is proposed. Via modifying the Laplacian eigenmap algorithm to replace Euclidean distance with kernel-based geometric distance in the neighbor graph construction, the method can preserve the consistency of local neighbor information and effectively extract the low-dimensional manifold features embedded in the high-dimensional nonlinear data sets. A nonlinear dimensionality reduction algorithm based on the improved Laplacian eigenmap is to directly learn high-dimensional fault signals and extract the intrinsic manifold features from them. The method greatly preserves the global geometry structure information embedded in the signals, and obviously improves the classification performance of fault pattern recognition. The experimental results on both simulation and engineering indicate the feasibility and effectiveness of the new method. 展开更多
关键词 Laplacian eigenmap Kernel trick Fault diagnosis Manifold learning
下载PDF
Adaptive spectral affinity propagation clustering 被引量:1
7
作者 TANG Lin SUN Leilei +1 位作者 GUO Chonghui ZHANG Zhen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第3期647-664,共18页
Affinity propagation(AP)is a classic clustering algorithm.To improve the classical AP algorithms,we propose a clustering algorithm namely,adaptive spectral affinity propagation(AdaSAP).In particular,we discuss why AP ... Affinity propagation(AP)is a classic clustering algorithm.To improve the classical AP algorithms,we propose a clustering algorithm namely,adaptive spectral affinity propagation(AdaSAP).In particular,we discuss why AP is not suitable for non-spherical clusters and present a unifying view of nine famous arbitrary-shaped clustering algorithms.We propose a strategy of extending AP in non-spherical clustering by constructing category similarity of objects.Leveraging the monotonicity that the clusters’number increases with the self-similarity in AP,we propose a model selection procedure that can determine the number of clusters adaptively.For the parameters introduced by extending AP in non-spherical clustering,we provide a grid-evolving strategy to optimize them automatically.The effectiveness of AdaSAP is evaluated by experiments on both synthetic datasets and real-world clustering tasks.Experimental results validate that the superiority of AdaSAP over benchmark algorithms like the classical AP and spectral clustering algorithms. 展开更多
关键词 affinity propagation(AP) Laplacian eigenmap(LE) arbitrary-shaped cluster model selection
下载PDF
FACE RECOGNITION USING TWO DIMENSIONAL LAPLACIAN EIGENMAP 被引量:1
8
作者 Chen Jiangfeng Yuan Baozong Pei Bingnan 《Journal of Electronics(China)》 2008年第5期616-621,共6页
Recently, some research efforts have shown that face images possibly reside on a nonlinear sub-manifold. Though Laplacianfaees method considered the manifold structures of the face images, it has limits to solve face ... Recently, some research efforts have shown that face images possibly reside on a nonlinear sub-manifold. Though Laplacianfaees method considered the manifold structures of the face images, it has limits to solve face recognition problem. This paper proposes a new feature extraction method, Two Dimensional Laplacian EigenMap (2DLEM), which especially considers the manifold structures of the face images, and extracts the proper features from face image matrix directly by using a linear transformation. As opposed to Laplacianfaces, 2DLEM extracts features directly from 2D images without a vectorization preprocessing. To test 2DLEM and evaluate its performance, a series of ex- periments are performed on the ORL database and the Yale database. Moreover, several experiments are performed to compare the performance of three 2D methods. The experiments show that 2DLEM achieves the best performance. 展开更多
关键词 (2DLEM) Face recognition MANIFOLD Laplacianfaces Two Dimensional Laplacian EigenMap
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部