Any electronic eigenstate of the paramagnetic ion open-shell is characterized by the three independent multipole asphericities for and 6 related to the second moments of the relevant crystal-field splittings by , wher...Any electronic eigenstate of the paramagnetic ion open-shell is characterized by the three independent multipole asphericities for and 6 related to the second moments of the relevant crystal-field splittings by , where . The Ak as the reduced matrix elements can serve as a reliable measure of the state capability for the splitting produced by the k-rank component of the crystal-field Hamiltonian. These multipolar characteristics allow one to verify any fitted crystal-field parameter set by comparing the calculated second moments and the experimental ones of the relevant crystal-field splittings. We present the multipole characteristics Ak for the extensive set of eigenstates from the lower parts of energy spectra of the tripositive 4 f N ions applying in the calculations the improved eigenfunctions of the free lanthanide ions obtained based on the M. Reid f-shell programs. Such amended asphericities are compared with those achieved for the simplified Russell-Saunders states. Next, they are classified with respect to the absolute or relative weight of Ak in the multipole structure of the considered states. For the majority of the analyzed states (about 80%) the Ak variation is of order of only a few percent. Some essential changes are found primarily for several states of Tm3+, Er3+, Nd3+, and Pr3+ ions. The detailed mechanisms of such Ak changes are unveiled. Particularly, certain noteworthy cancelations as well as enhancements of their magnitudes are explained.展开更多
We obtain. the exact analytical results of all the eigenvalues and eigenstates for three kinds of models describing N-mode multiphoton process without using the assumption of the Bethe ansatz. The exact analytical res...We obtain. the exact analytical results of all the eigenvalues and eigenstates for three kinds of models describing N-mode multiphoton process without using the assumption of the Bethe ansatz. The exact analytical results of all the eigenstates and eigenvalues are in terms of a parameter lambda for three kinds of models describing N-mode multiphoton process. The parameter is shown to be determined by the roots of a polynomial and is solvable analytically or numerically. Moreover, these three kinds of models can be processed with the same procedure.展开更多
We prove a concentration result of a Bloch eigenstate in a periodic channel under a constant gauge, In the semi-classical limit h → 0 these eigenstates concentrate near a maximizer of the scalar potential of the asso...We prove a concentration result of a Bloch eigenstate in a periodic channel under a constant gauge, In the semi-classical limit h → 0 these eigenstates concentrate near a maximizer of the scalar potential of the associated Schr6dinger operator, provided the constant gauge converges to a critical value from above. This is in contrast with the ground states which concentrate for any gauge in this limit near a minimizer of the scalar potential.展开更多
In a rotating noninertial frame, we investigate the eigenstates of the time-dependent problem for electronnucleus scattering assisted by a circularly polarized laser field. Numerical results of probability distributio...In a rotating noninertial frame, we investigate the eigenstates of the time-dependent problem for electronnucleus scattering assisted by a circularly polarized laser field. Numerical results of probability distribution, quantum potential, and current density are discussed. An approximate expression of scattering cross section for low laser frequency is given.展开更多
We consider the construction of exact eigenstates of the two-dimensional Fermi-Hubbard model defined on an L ×L lattice with a periodic condition. Based on the characteristics of Slater determinants, several meth...We consider the construction of exact eigenstates of the two-dimensional Fermi-Hubbard model defined on an L ×L lattice with a periodic condition. Based on the characteristics of Slater determinants, several methods are introduced to construct exact eigenstates of the model. The eigenstates constructed are independent of the on-site electron interaction and some of them can also represent exact eigenstates of the two-dimensional Bose-Hubbard model.展开更多
We study the sensitivity of energy eigenstates to small perturbation in quantum integrable and chaotic systems.It is shown that the distribution of rescaled components of perturbed states in unperturbed basis exhibits...We study the sensitivity of energy eigenstates to small perturbation in quantum integrable and chaotic systems.It is shown that the distribution of rescaled components of perturbed states in unperturbed basis exhibits qualitative difference in these two types of systems:being close to the Gaussian form in quantum chaotic systems,while,far from the Gaussian form in integrable systems.展开更多
We present the analytical expressions of eigenstates and eigenenergies by using a parameter λ without the assumption of Bethe anzatz for three kinds of seven-bosonic-mode mixing models. The parameter is shown to be d...We present the analytical expressions of eigenstates and eigenenergies by using a parameter λ without the assumption of Bethe anzatz for three kinds of seven-bosonic-mode mixing models. The parameter is shown to be determined by the roots of a simple polynomial. We also demonstrate the exact analytical expressions of eigenstates and energies without any unknown parameter.展开更多
We describe a mathematical structure which corresponds to the eigenstates of a density operator. For an unknown density operator, we propose an estimating procedure which uses successive "yes/no" measurements to sca...We describe a mathematical structure which corresponds to the eigenstates of a density operator. For an unknown density operator, we propose an estimating procedure which uses successive "yes/no" measurements to scan the Bloch sphere and approximately yields the eigenstates. This result is based on the quantum method of types and implies a relationship between the typical subspace and the Young frame.展开更多
Based on the rotation transformation in phase space and the technique of integration within an ordered product of operators, the coherent state representation of the multimode phase shifting operator and one of its ne...Based on the rotation transformation in phase space and the technique of integration within an ordered product of operators, the coherent state representation of the multimode phase shifting operator and one of its new applications in quantum mechanics are given. It is proved that the coherent state is a natural language for describing the phase shifting operator or multimode phase shifting operator. The multimode phase shifting operator is also a useful tool to solve the dynamic problems of the mnltimode coordinate-momentum coupled harmonic oscillators. The exact energy spectra and eigenstates of such multimode coupled harmonic oscillators can be easily obtained by using the rnultimode phase shifting operator.展开更多
For the first time we construct the eigenstate |τ〉 of noncommutatlve coordinate. It turns out that|τ〉 is an entangled state in the ordinary space. Remarkably, its Schmidt decomposition has definite expression in...For the first time we construct the eigenstate |τ〉 of noncommutatlve coordinate. It turns out that|τ〉 is an entangled state in the ordinary space. Remarkably, its Schmidt decomposition has definite expression in the coordinate representation and the momentum representation. The 〈τ| representation can simplify some calculations for obtaining energy level of two-dimensional oscillator in noncommutative space.展开更多
By means of expansions of rapidly in infinity decreasing functions in delta functions and their derivatives, we derive generalized boundary conditions of the Sturm-Liouville equation for transitions and barriers or we...By means of expansions of rapidly in infinity decreasing functions in delta functions and their derivatives, we derive generalized boundary conditions of the Sturm-Liouville equation for transitions and barriers or wells between two asymptotic potentials for which the solutions are supposed as known. We call such expansions “moment series” because the coefficients are determined by moments of the function. An infinite system of boundary conditions is obtained and it is shown how by truncation it can be reduced to approximations of a different order (explicitly made up to third order). Reflection and refraction problems are considered with such approximations and also discrete bound states possible in nonsymmetric and symmetric potential wells are dealt with. This is applicable for large wavelengths compared with characteristic lengths of potential changes. In Appendices we represent the corresponding foundations of Generalized functions and apply them to barriers and wells and to transition functions. The Sturm-Liouville equation is not only interesting because some important second-order differential equations can be reduced to it but also because it is easier to demonstrates some details of the derivations for this one-dimensional equation than for the full three-dimensional vectorial equations of electrodynamics of media. The article continues a paper that was made long ago.展开更多
Preparing a particle in a superposition or a wave packet of eigenstates of a physical quantity is to let it interact with a large object. The composite system composed of the particle and the large object evolves into...Preparing a particle in a superposition or a wave packet of eigenstates of a physical quantity is to let it interact with a large object. The composite system composed of the particle and the large object evolves into an entangled state. When the state of the large object is considered to be approximately unchanged, the entangled state can be approximately considered as a product state, and then the particle is prepared in an approximate superposed state. We consider the Schrodinger equation for a composite system with interactions between subsystems as a fundamental postulate and a single particle’s Schrodinger equation must be approximately obtained from it. We argue that superposition of states exists only in composite systems. Interaction exchanging some quantities between subsystems makes conservation laws strictly hold, and no wave packet of a free particle yields. With this point, we can also understand the double-slit experiment and the tunnel phenomenon.展开更多
Trapped ions, under electromagnetic confinement and Coulomb repulsion, can behave as non-interacting particles in one-dimensional lattices. Here we explore analytically the possible effects regarding Anderson localiza...Trapped ions, under electromagnetic confinement and Coulomb repulsion, can behave as non-interacting particles in one-dimensional lattices. Here we explore analytically the possible effects regarding Anderson localization in a chain of trapped ions experiencing laser Bessel beams. Under an experimentally feasible condition, we predict an analytical form of the energy-dependent mobility edges, which is verified to be in good agreement with the exact numerical results except for the top band. Some other important properties regarding the phonon localization in the ion chain are also discussed both analytically and numerically. Our results are relevant to experimental observation of localization–delocalization transition in the ion trap and helpful for deeper understanding of the rich phenomena due to long-range phonon hopping.展开更多
A novel model of charged leptons is presented, which contains two basics hypotheses. The first hypothesis is that the Yukawa coupling between Higgs field and charged leptons is the weak interaction, the Higgs field is...A novel model of charged leptons is presented, which contains two basics hypotheses. The first hypothesis is that the Yukawa coupling between Higgs field and charged leptons is the weak interaction, the Higgs field is a scalar intermediate boson which changes the chirality of charged leptons in the weak interaction. The other hypothesis is that the flavor eigenstates of charged leptons are the superposition states of left-handed and right-handed elementary Weyl spinors before the electroweak symmetry breaking. According to this model, the Yukawa coupling constants between Higgs field and three generations of charged leptons are considered to be a universal constant, and the difference of the masses of different charged leptons is due to the different left-right mixing angles of their flavor eigenstates.展开更多
We theoretically investigate the quantum states of a Hamiltonian model for quasi-one-dimensional ultracold trapped gases. From the ansatz given by the numerical solution of the Schrödinger equation of the sys...We theoretically investigate the quantum states of a Hamiltonian model for quasi-one-dimensional ultracold trapped gases. From the ansatz given by the numerical solution of the Schrödinger equation of the system, we develop a scattering potential functional form and an approximate solution for the analytical approach of the model. We obtain the set of approximate eigenstates and eigenenergies that can be used in future improvements on the study of atomic scattering in low dimensional ultracold gases. We also show that there is a parity inversion of the ground state of the model as the interaction strength increases.展开更多
By virtue of the completeness of Wigner operator and Weyl correspondence we construct a general equation for deriving pure state density operators. Several important examples are considered as the applications of this...By virtue of the completeness of Wigner operator and Weyl correspondence we construct a general equation for deriving pure state density operators. Several important examples are considered as the applications of this equation, which shows that our approach is effective and convenient for deducing these entangled state representations.展开更多
To solve the Flash-based FPGA in the manufacturing process,the ion implantation process will bring electrons into the floating gate of the P-channel Flash cell so that the Flash switch is in a weak conduction state,re...To solve the Flash-based FPGA in the manufacturing process,the ion implantation process will bring electrons into the floating gate of the P-channel Flash cell so that the Flash switch is in a weak conduction state,resulting in the Flash-based FPGA eigenstate current problem.In this paper,the mechanism of its generation is analyzed,and four methods are used includ-ing ultraviolet light erasing,high-temperature baking,X-ray irradiation,and circuit logic control.A comparison of these four methods can identify the circuit design by using circuit logic to control the path of the power supply that is the most suitable and reliable method to solve the Flash-based FPGA eigenstate current problem.By this method,the power-on current of 3.5 mil-lion Flash-based FPGA can be reduced to less than 0.3 A,and the chip can start normally.The function and performance of the chip can then be further tested and evaluated,which is one of the key technologies for developing Flash-based FPGA.展开更多
We study the thermalization of a quenched disordered Bose–Hubbard system. By considering the eigenstate distribution fluctuation, we show that the thermal to many-body localized transition is always connected to a mi...We study the thermalization of a quenched disordered Bose–Hubbard system. By considering the eigenstate distribution fluctuation, we show that the thermal to many-body localized transition is always connected to a minimum of this distribution fluctuation. We also observe a Mott-localized regime, where the system fails to thermalize due to the strong on-site repulsion. Lastly, we show how to detect this eigenstate distribution fluctuation in a cold atom system, which is equivalent to measure the Loschmidt echo of the system. Our work suggests a way to measure the thermal-to-localized transitions in experiments, especially for a large system.展开更多
Using two Einstein-Podolsky Rosen pair eigenstates |η) as quantum channels, we study the teleportationof two-mode quantum state of continuous variables.
We discuss the entanglement swapping of two pairs of displaced two-mode squeezed states and find that the squeezing parameter of the outcoming squeezed state is less than that of the originM squeezed states. The calcu...We discuss the entanglement swapping of two pairs of displaced two-mode squeezed states and find that the squeezing parameter of the outcoming squeezed state is less than that of the originM squeezed states. The calculation is greatly simplified by virtue of the natural expression of the two-mode squeezing operator in EPR eigenstate representation. A protocol for such entanglement swapping is proposed.展开更多
文摘Any electronic eigenstate of the paramagnetic ion open-shell is characterized by the three independent multipole asphericities for and 6 related to the second moments of the relevant crystal-field splittings by , where . The Ak as the reduced matrix elements can serve as a reliable measure of the state capability for the splitting produced by the k-rank component of the crystal-field Hamiltonian. These multipolar characteristics allow one to verify any fitted crystal-field parameter set by comparing the calculated second moments and the experimental ones of the relevant crystal-field splittings. We present the multipole characteristics Ak for the extensive set of eigenstates from the lower parts of energy spectra of the tripositive 4 f N ions applying in the calculations the improved eigenfunctions of the free lanthanide ions obtained based on the M. Reid f-shell programs. Such amended asphericities are compared with those achieved for the simplified Russell-Saunders states. Next, they are classified with respect to the absolute or relative weight of Ak in the multipole structure of the considered states. For the majority of the analyzed states (about 80%) the Ak variation is of order of only a few percent. Some essential changes are found primarily for several states of Tm3+, Er3+, Nd3+, and Pr3+ ions. The detailed mechanisms of such Ak changes are unveiled. Particularly, certain noteworthy cancelations as well as enhancements of their magnitudes are explained.
文摘We obtain. the exact analytical results of all the eigenvalues and eigenstates for three kinds of models describing N-mode multiphoton process without using the assumption of the Bethe ansatz. The exact analytical results of all the eigenstates and eigenvalues are in terms of a parameter lambda for three kinds of models describing N-mode multiphoton process. The parameter is shown to be determined by the roots of a polynomial and is solvable analytically or numerically. Moreover, these three kinds of models can be processed with the same procedure.
文摘We prove a concentration result of a Bloch eigenstate in a periodic channel under a constant gauge, In the semi-classical limit h → 0 these eigenstates concentrate near a maximizer of the scalar potential of the associated Schr6dinger operator, provided the constant gauge converges to a critical value from above. This is in contrast with the ground states which concentrate for any gauge in this limit near a minimizer of the scalar potential.
基金the National Natural Science Foundation of China under
文摘In a rotating noninertial frame, we investigate the eigenstates of the time-dependent problem for electronnucleus scattering assisted by a circularly polarized laser field. Numerical results of probability distribution, quantum potential, and current density are discussed. An approximate expression of scattering cross section for low laser frequency is given.
基金Project supported by the National Natural Science Foundation of China(Grant No.11674059)Natural Science Foundation of Fujian Province,China(Grant Nos.2016J01008 and 2016J01009)
文摘We consider the construction of exact eigenstates of the two-dimensional Fermi-Hubbard model defined on an L ×L lattice with a periodic condition. Based on the characteristics of Slater determinants, several methods are introduced to construct exact eigenstates of the model. The eigenstates constructed are independent of the on-site electron interaction and some of them can also represent exact eigenstates of the two-dimensional Bose-Hubbard model.
基金This paper was supported by the National Natural Science Foundation of China under Grant Nos.11535011 and 11775210.
文摘We study the sensitivity of energy eigenstates to small perturbation in quantum integrable and chaotic systems.It is shown that the distribution of rescaled components of perturbed states in unperturbed basis exhibits qualitative difference in these two types of systems:being close to the Gaussian form in quantum chaotic systems,while,far from the Gaussian form in integrable systems.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.90103026 and 60078023).
文摘We present the analytical expressions of eigenstates and eigenenergies by using a parameter λ without the assumption of Bethe anzatz for three kinds of seven-bosonic-mode mixing models. The parameter is shown to be determined by the roots of a simple polynomial. We also demonstrate the exact analytical expressions of eigenstates and energies without any unknown parameter.
基金Supported by the National Natural Science Foundation of China(61271174,61372076,61301178)
文摘We describe a mathematical structure which corresponds to the eigenstates of a density operator. For an unknown density operator, we propose an estimating procedure which uses successive "yes/no" measurements to scan the Bloch sphere and approximately yields the eigenstates. This result is based on the quantum method of types and implies a relationship between the typical subspace and the Young frame.
基金Project supported by the Natural Science Foundation of Shandong Province of China (Grant No. Y2008A16)the Natural Science Foundation of Heze University of Shandong Province, China (Grant No. XY09WL01)
文摘Based on the rotation transformation in phase space and the technique of integration within an ordered product of operators, the coherent state representation of the multimode phase shifting operator and one of its new applications in quantum mechanics are given. It is proved that the coherent state is a natural language for describing the phase shifting operator or multimode phase shifting operator. The multimode phase shifting operator is also a useful tool to solve the dynamic problems of the mnltimode coordinate-momentum coupled harmonic oscillators. The exact energy spectra and eigenstates of such multimode coupled harmonic oscillators can be easily obtained by using the rnultimode phase shifting operator.
基金The project supported by Specialized Research Fund for the Doctorial Progress of Higher Education (SRFDP) under Grant No. 2004035819
文摘For the first time we construct the eigenstate |τ〉 of noncommutatlve coordinate. It turns out that|τ〉 is an entangled state in the ordinary space. Remarkably, its Schmidt decomposition has definite expression in the coordinate representation and the momentum representation. The 〈τ| representation can simplify some calculations for obtaining energy level of two-dimensional oscillator in noncommutative space.
文摘By means of expansions of rapidly in infinity decreasing functions in delta functions and their derivatives, we derive generalized boundary conditions of the Sturm-Liouville equation for transitions and barriers or wells between two asymptotic potentials for which the solutions are supposed as known. We call such expansions “moment series” because the coefficients are determined by moments of the function. An infinite system of boundary conditions is obtained and it is shown how by truncation it can be reduced to approximations of a different order (explicitly made up to third order). Reflection and refraction problems are considered with such approximations and also discrete bound states possible in nonsymmetric and symmetric potential wells are dealt with. This is applicable for large wavelengths compared with characteristic lengths of potential changes. In Appendices we represent the corresponding foundations of Generalized functions and apply them to barriers and wells and to transition functions. The Sturm-Liouville equation is not only interesting because some important second-order differential equations can be reduced to it but also because it is easier to demonstrates some details of the derivations for this one-dimensional equation than for the full three-dimensional vectorial equations of electrodynamics of media. The article continues a paper that was made long ago.
文摘Preparing a particle in a superposition or a wave packet of eigenstates of a physical quantity is to let it interact with a large object. The composite system composed of the particle and the large object evolves into an entangled state. When the state of the large object is considered to be approximately unchanged, the entangled state can be approximately considered as a product state, and then the particle is prepared in an approximate superposed state. We consider the Schrodinger equation for a composite system with interactions between subsystems as a fundamental postulate and a single particle’s Schrodinger equation must be approximately obtained from it. We argue that superposition of states exists only in composite systems. Interaction exchanging some quantities between subsystems makes conservation laws strictly hold, and no wave packet of a free particle yields. With this point, we can also understand the double-slit experiment and the tunnel phenomenon.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11734018,11674360,11404377,and 91636220)
文摘Trapped ions, under electromagnetic confinement and Coulomb repulsion, can behave as non-interacting particles in one-dimensional lattices. Here we explore analytically the possible effects regarding Anderson localization in a chain of trapped ions experiencing laser Bessel beams. Under an experimentally feasible condition, we predict an analytical form of the energy-dependent mobility edges, which is verified to be in good agreement with the exact numerical results except for the top band. Some other important properties regarding the phonon localization in the ion chain are also discussed both analytically and numerically. Our results are relevant to experimental observation of localization–delocalization transition in the ion trap and helpful for deeper understanding of the rich phenomena due to long-range phonon hopping.
文摘A novel model of charged leptons is presented, which contains two basics hypotheses. The first hypothesis is that the Yukawa coupling between Higgs field and charged leptons is the weak interaction, the Higgs field is a scalar intermediate boson which changes the chirality of charged leptons in the weak interaction. The other hypothesis is that the flavor eigenstates of charged leptons are the superposition states of left-handed and right-handed elementary Weyl spinors before the electroweak symmetry breaking. According to this model, the Yukawa coupling constants between Higgs field and three generations of charged leptons are considered to be a universal constant, and the difference of the masses of different charged leptons is due to the different left-right mixing angles of their flavor eigenstates.
基金thank financial support from CNPq,FAPEMIG and CAPES(Brazilian funding agencies).
文摘We theoretically investigate the quantum states of a Hamiltonian model for quasi-one-dimensional ultracold trapped gases. From the ansatz given by the numerical solution of the Schrödinger equation of the system, we develop a scattering potential functional form and an approximate solution for the analytical approach of the model. We obtain the set of approximate eigenstates and eigenenergies that can be used in future improvements on the study of atomic scattering in low dimensional ultracold gases. We also show that there is a parity inversion of the ground state of the model as the interaction strength increases.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10874174 and 90203002)
文摘By virtue of the completeness of Wigner operator and Weyl correspondence we construct a general equation for deriving pure state density operators. Several important examples are considered as the applications of this equation, which shows that our approach is effective and convenient for deducing these entangled state representations.
基金supported by the National Natural Science Foundation of China(No.62174150)the Natural Science Foundation of Jiangsu Province(No.BK20211040).
文摘To solve the Flash-based FPGA in the manufacturing process,the ion implantation process will bring electrons into the floating gate of the P-channel Flash cell so that the Flash switch is in a weak conduction state,resulting in the Flash-based FPGA eigenstate current problem.In this paper,the mechanism of its generation is analyzed,and four methods are used includ-ing ultraviolet light erasing,high-temperature baking,X-ray irradiation,and circuit logic control.A comparison of these four methods can identify the circuit design by using circuit logic to control the path of the power supply that is the most suitable and reliable method to solve the Flash-based FPGA eigenstate current problem.By this method,the power-on current of 3.5 mil-lion Flash-based FPGA can be reduced to less than 0.3 A,and the chip can start normally.The function and performance of the chip can then be further tested and evaluated,which is one of the key technologies for developing Flash-based FPGA.
基金Supported by the National Natural Science Foundation of China under Grant No 11504021the Fundamental Research Funds for Central Universities of China under Grant No FRF-TP-17-023A2
文摘We study the thermalization of a quenched disordered Bose–Hubbard system. By considering the eigenstate distribution fluctuation, we show that the thermal to many-body localized transition is always connected to a minimum of this distribution fluctuation. We also observe a Mott-localized regime, where the system fails to thermalize due to the strong on-site repulsion. Lastly, we show how to detect this eigenstate distribution fluctuation in a cold atom system, which is equivalent to measure the Loschmidt echo of the system. Our work suggests a way to measure the thermal-to-localized transitions in experiments, especially for a large system.
基金The project supported by Natural Science Foundation of Zhejiang Province of ChinaOpen Foundation of Lahoratory of HighIntensity Optics,Shanghai Institute of Optics and Fine Mechanics
文摘Using two Einstein-Podolsky Rosen pair eigenstates |η) as quantum channels, we study the teleportationof two-mode quantum state of continuous variables.
文摘We discuss the entanglement swapping of two pairs of displaced two-mode squeezed states and find that the squeezing parameter of the outcoming squeezed state is less than that of the originM squeezed states. The calculation is greatly simplified by virtue of the natural expression of the two-mode squeezing operator in EPR eigenstate representation. A protocol for such entanglement swapping is proposed.