The real-time identification of dynamic parameters is importantfor the control system of spacecraft. The eigensystme realizationalgorithm (ERA) is currently the typical method for such applica-tion. In order to identi...The real-time identification of dynamic parameters is importantfor the control system of spacecraft. The eigensystme realizationalgorithm (ERA) is currently the typical method for such applica-tion. In order to identify the dynamic parameter of spacecraftrapidly and accurately, an accelerated ERA with a partial singularvalues decomposition (PSVD) algorithm is presented. In the PSVD, theHankel matrix is reduced to dual diagonal form first, and thentransformed into a tridiagonal matrix.展开更多
The identification result of operational mode is eurychoric while operational mode identification is investigated under ambient excitation,which is influenced by the signal size and the time interval.The operational m...The identification result of operational mode is eurychoric while operational mode identification is investigated under ambient excitation,which is influenced by the signal size and the time interval.The operational mode identification method,which is based on the sliding time window method and the eigensystem realization algorithm(ERA),is investigated to improve the identification accuracy and stability.Firstly,the theory of the ERA method is introduced.Secondly,the strategy for decomposition and implementation is put forward,including the sliding time window method and the filtration method of modes.At last,an example is studied,where the model of a cantilever beam is built and the white noise exciting is input.Results show that the operational mode identification method can realize the modes,and has high robustness to the signal to noise ratio and signal size.展开更多
A ship is operated under an extremely complex environment, and waves and winds are assumed to be the stochastic excitations. Moreover, the propeller, host and mechanical equipment can also induce the harmonic response...A ship is operated under an extremely complex environment, and waves and winds are assumed to be the stochastic excitations. Moreover, the propeller, host and mechanical equipment can also induce the harmonic responses. In order to reduce structural vibration, it is important to obtain the modal parameters information of a ship. However, the traditional modal parameter identification methods are not suitable since the excitation information is difficult to obtain. Natural excitation technique-eigensystem realization algorithm (NExT-ERA) is an operational modal identification method which abstracts modal parameters only from the response signals, and it is based on the assumption that the input to the structure is pure white noise. Hence, it is necessary to study the influence of harmonic excitations while applying the NExT-ERA method to a ship structure. The results of this research paper indicate the practical experiences under ambient excitation, ship model experiments were successfully done in the modal parameters identification only when the harmonic frequencies were not too close to the modal frequencies.展开更多
现代的大型复杂结构,如大坝、高层建筑、桥梁及海洋平台等,处于复杂的环境载荷作用下,这些环境载荷往往是无法测量的。在仅有输出响应时,应用随机减量法RDT获得自由衰减响应信号,而后用时域复指数拟合法、ITD法、特征系统实现算法ERA等...现代的大型复杂结构,如大坝、高层建筑、桥梁及海洋平台等,处于复杂的环境载荷作用下,这些环境载荷往往是无法测量的。在仅有输出响应时,应用随机减量法RDT获得自由衰减响应信号,而后用时域复指数拟合法、ITD法、特征系统实现算法ERA等算法获得结构的模态参数是一种有效的方法。但在数据量有限时,随机减量函数的平均次数过少,导致RD函数的收敛性较差。为此提出了利用Vector Random Decrement技术(VRDT)提取自由衰减响应信号,而后利用特征系统实现算法ERA求得模态参数的方法,新算法能够有效地提高模态参数识别精度。数值算例验证了所提算法的有效性。展开更多
Identification of modal parameters of a linear structure with output-only measurements has received much attention over the past decades. In the paper, the Natural Excitation Technique (NExT) is used for acquisition o...Identification of modal parameters of a linear structure with output-only measurements has received much attention over the past decades. In the paper, the Natural Excitation Technique (NExT) is used for acquisition of the impulse signals from the structural responses. Then Eigensystem Realization Algorithm (ERA) is utilized for modal identification. For disregarding the fictitious ‘computational modes', a procedure, Statistically Averaging Modal Frequency Method (SAMFM), is developed to distinguish the true modes from noise modes, and to improve the precision of the identified modal frequencies of the structure. An offshore platform is modeled with the finite element method. The theoretical modal parameters are obtained for a comparison with the identified values. The dynamic responses of the platform under random wave loading are computed for providing the output signals used for identification with ERA. Results of simulation demonstrate that the proposed method can determine the system modal frequency with high precision.展开更多
文摘The real-time identification of dynamic parameters is importantfor the control system of spacecraft. The eigensystme realizationalgorithm (ERA) is currently the typical method for such applica-tion. In order to identify the dynamic parameter of spacecraftrapidly and accurately, an accelerated ERA with a partial singularvalues decomposition (PSVD) algorithm is presented. In the PSVD, theHankel matrix is reduced to dual diagonal form first, and thentransformed into a tridiagonal matrix.
基金supported in part by the National Basic Research Program of China (No. JCKY2016203B032)
文摘The identification result of operational mode is eurychoric while operational mode identification is investigated under ambient excitation,which is influenced by the signal size and the time interval.The operational mode identification method,which is based on the sliding time window method and the eigensystem realization algorithm(ERA),is investigated to improve the identification accuracy and stability.Firstly,the theory of the ERA method is introduced.Secondly,the strategy for decomposition and implementation is put forward,including the sliding time window method and the filtration method of modes.At last,an example is studied,where the model of a cantilever beam is built and the white noise exciting is input.Results show that the operational mode identification method can realize the modes,and has high robustness to the signal to noise ratio and signal size.
基金Supported by the National Natural Science Foundation of China(51079027)
文摘A ship is operated under an extremely complex environment, and waves and winds are assumed to be the stochastic excitations. Moreover, the propeller, host and mechanical equipment can also induce the harmonic responses. In order to reduce structural vibration, it is important to obtain the modal parameters information of a ship. However, the traditional modal parameter identification methods are not suitable since the excitation information is difficult to obtain. Natural excitation technique-eigensystem realization algorithm (NExT-ERA) is an operational modal identification method which abstracts modal parameters only from the response signals, and it is based on the assumption that the input to the structure is pure white noise. Hence, it is necessary to study the influence of harmonic excitations while applying the NExT-ERA method to a ship structure. The results of this research paper indicate the practical experiences under ambient excitation, ship model experiments were successfully done in the modal parameters identification only when the harmonic frequencies were not too close to the modal frequencies.
文摘现代的大型复杂结构,如大坝、高层建筑、桥梁及海洋平台等,处于复杂的环境载荷作用下,这些环境载荷往往是无法测量的。在仅有输出响应时,应用随机减量法RDT获得自由衰减响应信号,而后用时域复指数拟合法、ITD法、特征系统实现算法ERA等算法获得结构的模态参数是一种有效的方法。但在数据量有限时,随机减量函数的平均次数过少,导致RD函数的收敛性较差。为此提出了利用Vector Random Decrement技术(VRDT)提取自由衰减响应信号,而后利用特征系统实现算法ERA求得模态参数的方法,新算法能够有效地提高模态参数识别精度。数值算例验证了所提算法的有效性。
文摘Identification of modal parameters of a linear structure with output-only measurements has received much attention over the past decades. In the paper, the Natural Excitation Technique (NExT) is used for acquisition of the impulse signals from the structural responses. Then Eigensystem Realization Algorithm (ERA) is utilized for modal identification. For disregarding the fictitious ‘computational modes', a procedure, Statistically Averaging Modal Frequency Method (SAMFM), is developed to distinguish the true modes from noise modes, and to improve the precision of the identified modal frequencies of the structure. An offshore platform is modeled with the finite element method. The theoretical modal parameters are obtained for a comparison with the identified values. The dynamic responses of the platform under random wave loading are computed for providing the output signals used for identification with ERA. Results of simulation demonstrate that the proposed method can determine the system modal frequency with high precision.