期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
THE EIGENVALUE SENSITIVITY ANALYSIS AND DESIGN FOR INTEGRATED FLIGHT/PROPULSION CONTROL SYSTEM
1
作者 Shen Gongzhang, Chen Zongji and Peng KemaoBeijing University of Aeronautics and Astronautics 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1990年第4期277-284,共8页
In this paper, sensitivity approaches are taken to analyze and design an integrated flight propulsion control system where the interaction between subsystems direitly affects the stability property and handling perfor... In this paper, sensitivity approaches are taken to analyze and design an integrated flight propulsion control system where the interaction between subsystems direitly affects the stability property and handling performances of the aircraft. The eigenvalue sen sitivity approach is employed to study the effect of coupling parameters on system stability and gain sensitivity approach is used to direct the reduced states feedback suboptimal control system design. Simulation results show that the integrated flight propulsion control system designed by sensitivity approaches is of good performance. 展开更多
关键词 THE EIGENVALUE sensitivity ANALYSIS AND DESIGN FOR INTEGRATED FLIGHT/PROPULSION CONTROL SYSTEM SIMULATION
下载PDF
Rapid Parameter-Optimizing Strategy for Plug-and-Play Devices in DC Distribution Systems under the Background of Digital Transformation
2
作者 Zhi Li Yufei Zhao +2 位作者 Yueming Ji Hanwen Gu Zaibin Jiao 《Energy Engineering》 EI 2024年第12期3899-3927,共29页
By integrating advanced digital technologies such as cloud computing and the Internet of Things in sensor measurement,information communication,and other fields,the digital DC distribution network can efficiently and ... By integrating advanced digital technologies such as cloud computing and the Internet of Things in sensor measurement,information communication,and other fields,the digital DC distribution network can efficiently and reliably access DistributedGenerator(DG)and Energy Storage Systems(ESS),exhibiting significant advantages in terms of controllability and meeting requirements of Plug-and-Play(PnP)operations.However,during device plug-in and-out processes,improper systemparametersmay lead to small-signal stability issues.Therefore,before executing PnP operations,conducting stability analysis and adjusting parameters swiftly is crucial.This study introduces a four-stage strategy for parameter optimization to enhance systemstability efficiently.In the first stage,state-of-the-art technologies in measurement and communication are utilized to correct model parameters.Then,a novel indicator is adopted to identify the key parameters that influence stability in the second stage.Moreover,in the third stage,a local-parameter-tuning strategy,which leverages rapid parameter boundary calculations as a more efficient alternative to plotting root loci,is used to tune the selected parameters.Considering that the local-parameter-tuning strategy may fail due to some operating parameters being limited in adjustment,a multiparameter-tuning strategy based on the particle swarm optimization(PSO)is proposed to comprehensively adjust the dominant parameters to improve the stability margin of the system.Lastly,system stability is reassessed in the fourth stage.The proposed parameter-optimization strategy’s effectiveness has been validated through eigenvalue analysis and nonlinear time-domain simulations. 展开更多
关键词 DC distribution system digital grid small-signal stability eigenvalue parametric sensitivity particle swarm optimization parameter boundary calculation parameter tuning
下载PDF
A Closed-form Formulation of Eigenvalue Sensitivity Based on Matrix Calculus for Small-signal Stability Analysis in Power System 被引量:2
3
作者 Peijie Li Yucheng Wei +2 位作者 Junjian Qi Xiaoqing Bai Hua Wei 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2021年第6期1436-1445,共10页
With the rapid development of power-electronicsenabled power systems,the new converter-based generators are deteriorating the small-signal stability of the power system.Although the numerical differentiation method ha... With the rapid development of power-electronicsenabled power systems,the new converter-based generators are deteriorating the small-signal stability of the power system.Although the numerical differentiation method has been widely used for approximately calculating the eigenvalue sensitivities,its accuracy has not been carefully investigated.Besides,the element-based formulation for computing closed-form eigenvalue sensitivities has not been used in any commercial software due to the average efficiency,complicated formulation,and errorprone characteristics.Based on the matrix calculus,this paper proposes an easily manipulated formulation of the closed-form eigenvalue sensitivities with respect to the power generation.The distinguishing feature of the formulation is that all the formulas consist of vector and matrix operations,which can be performed by developed numerical algorithms to take full advantages of architectural features of the modern computer.The tests on WSCC 3-machine 9-bus system,New England 10-machine 39-bus system,and IEEE 54-machine 118-bus system show that the accuracy of the proposed formulation is superior to the numerical differentiation method and the efficiency is also greatly improved compared to the element-based closed-form formulation.The proposed formulation will be helpful to perform a more accurate and faster stability analysis of a power grid with converter-based devices. 展开更多
关键词 Closed-form formulation converter-based devices eigenvalue sensitivity matrix calculus small-signal stability
原文传递
Time-domain Dynamic-performanceimprovement Method for Pulse-width-modulated DC-DC Converters Based on Eigenvalue and Eigenvector Sensitivity
4
作者 Hong Li Zexi Zhou +1 位作者 Jinchang Pan Qian Liu 《Chinese Journal of Electrical Engineering》 CSCD 2023年第1期104-119,共16页
For pulse-width modulated(PWM)DC-DC converters,the input voltage fluctuation and load variation in practical applications make it necessary for them to have better dynamic performance to meet the regulation requiremen... For pulse-width modulated(PWM)DC-DC converters,the input voltage fluctuation and load variation in practical applications make it necessary for them to have better dynamic performance to meet the regulation requirements of the system.The dynamic-performance-improvement method for PWM DC-DC converters is mainly based on indirect dynamic performance indices,such as the gain margin and phase margin.However,both settling time and overshoot in the time domain are important in practical engineering.This makes it difficult for designers to obtain a clear understanding of the time-domain dynamic performance that can be achieved with improved control.In this study,a direct analysis of the time-domain dynamic characteristic of PWM DC-DC converters is performed.A dynamic-performance-improvement method based on eigenvalues and eigenvector sensitivity(E2S-based DPIM)is proposed to directly improve the time-domain dynamic performance index of PWM DC-DC converters.By considering a boost converter with proportional-integral control as an example,an additional virtual inductor current feedback control was designed using the proposed dynamic-performance-improvement method.Simulation and experimental results verify the validity and accuracy of the proposed dynamic-performance-improvement method. 展开更多
关键词 PWM DC-DC converter time-domain dynamic-performance-improvement method eigenvalue and eigenvector sensitivity additional virtual inductor current feedback control
原文传递
Stability-improvement Method of Cascaded DC-DC Converters with Additional Voltage-error Mutual Feedback Control 被引量:5
5
作者 Zhongya Guo Hong Li +2 位作者 Chen Liu Yangyang Zhao Wenzhe Su 《Chinese Journal of Electrical Engineering》 CSCD 2019年第2期63-71,共9页
The interaction between the source and load converters in cascaded DC-DC converters may cause instability.Thus,improving the stability of cascaded DC-DC converters is important.To solve the above-mentioned problem,a f... The interaction between the source and load converters in cascaded DC-DC converters may cause instability.Thus,improving the stability of cascaded DC-DC converters is important.To solve the above-mentioned problem,a flowchart to improve the control method is established by calculating the eigenvalue sensitivity of a time-domain model of cascaded DC-DC converters.Further,an additional voltage-error mutual feedback control method is firstly proposed based on the flowchart provided in this study to improve the stability of cascaded DC-DC converters.Subsequently,the influence of the proposed mutual feedback control on the stability of cascaded DC-DC converters is analyzed.Finally,the effectiveness of the proposed control method is verified by simulation and experiment. 展开更多
关键词 Cascaded DC-DC converters stability improvement time-domain model eigenvalue sensitivity
原文传递
A Novel Perturbative Iteration Algorithm for Effective and Efficient Solution of Frequency-Dependent Eigenvalue Problems
6
作者 Rongming Lin 《Advances in Applied Mathematics and Mechanics》 SCIE 2012年第3期325-339,共15页
Many engineering structures exhibit frequency dependent characteristics and analyses of these structures lead to frequency dependent eigenvalue problems.This paper presents a novel perturbative iteration(PI)algorithm ... Many engineering structures exhibit frequency dependent characteristics and analyses of these structures lead to frequency dependent eigenvalue problems.This paper presents a novel perturbative iteration(PI)algorithm which can be used to effectively and efficiently solve frequency dependent eigenvalue problems of general frequency dependent systems.Mathematical formulations of the proposed method are developed and based on these formulations,a computer algorithm is devised.Extensive numerical case examples are given to demonstrate the practicality of the proposed method.When all modes are included,the method is exact and when only a subset of modes are used,very accurate results are obtained. 展开更多
关键词 Frequency dependent eigenvalue problem structural vibration computer algorithm damped structural vibration perturbative iteration eigenvalue and eigenvector sensitivity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部