Electrolysis tanks are used to smeltmetals based on electrochemical principles,and the short-circuiting of the pole plates in the tanks in the production process will lead to high temperatures,thus affecting normal pr...Electrolysis tanks are used to smeltmetals based on electrochemical principles,and the short-circuiting of the pole plates in the tanks in the production process will lead to high temperatures,thus affecting normal production.Aiming at the problems of time-consuming and poor accuracy of existing infrared methods for high-temperature detection of dense pole plates in electrolysis tanks,an infrared dense pole plate anomalous target detection network YOLOv5-RMF based on You Only Look Once version 5(YOLOv5)is proposed.Firstly,we modified the Real-Time Enhanced Super-Resolution Generative Adversarial Network(Real-ESRGAN)by changing the U-shaped network(U-Net)to Attention U-Net,to preprocess the images;secondly,we propose a new Focus module that introduces the Marr operator,which can provide more boundary information for the network;again,because Complete Intersection over Union(CIOU)cannot accommodate target borders that are increasing and decreasing,replace CIOU with Extended Intersection over Union(EIOU),while the loss function is changed to Focal and Efficient IOU(Focal-EIOU)due to the different difficulty of sample detection.On the homemade dataset,the precision of our method is 94%,the recall is 70.8%,and the map@.5 is 83.6%,which is an improvement of 1.3%in precision,9.7%in recall,and 7%in map@.5 over the original network.The algorithm can meet the needs of electrolysis tank pole plate abnormal temperature detection,which can lay a technical foundation for improving production efficiency and reducing production waste.展开更多
An efficient vehicle detection approach is proposed for traffic surveillance images, which is based on information fusion of vehicle symmetrical contour and license plate position. The vertical symmetry axis of the ve...An efficient vehicle detection approach is proposed for traffic surveillance images, which is based on information fusion of vehicle symmetrical contour and license plate position. The vertical symmetry axis of the vehicle contour in an image is. first detected, and then the vertical and the horizontal symmetry axes of the license plate are detected using the symmetry axis of the vehicle contour as a reference. The vehicle location in an image is determined using license plate symmetry axes and the vertical and the horizontal projection maps of the vehicle edge image. A dataset consisting of 450 images (15 classes of vehicles) is used to test the proposed method. The experimental results indicate that compared with the vehicle contour-based, the license plate location-based, the vehicle texture-based and the Gabor feature-based methods, the proposed method is the best with a detection accuracy of 90.7% and an elapsed time of 125 ms.展开更多
Wearing helmetswhile riding electric bicycles can significantly reduce head injuries resulting fromtraffic accidents.To effectively monitor compliance,the utilization of target detection algorithms through traffic cam...Wearing helmetswhile riding electric bicycles can significantly reduce head injuries resulting fromtraffic accidents.To effectively monitor compliance,the utilization of target detection algorithms through traffic cameras plays a vital role in identifying helmet usage by electric bicycle riders and recognizing license plates on electric bicycles.However,manual enforcement by traffic police is time-consuming and labor-intensive.Traditional methods face challenges in accurately identifying small targets such as helmets and license plates using deep learning techniques.This paper proposes an enhanced model for detecting helmets and license plates on electric bicycles,addressing these challenges.The proposedmodel improves uponYOLOv8n by deepening the network structure,incorporating weighted connections,and introducing lightweight convolutional modules.These modifications aim to enhance the precision of small target recognition while reducing the model’s parameters,making it suitable for deployment on low-performance devices in real traffic scenarios.Experimental results demonstrate that the model achieves an mAP@0.5 of 91.8%,showing an 11.5%improvement over the baselinemodel,with a 16.2%reduction in parameters.Additionally,themodel achieves a frames per second(FPS)rate of 58,meeting the accuracy and speed requirements for detection in actual traffic scenarios.展开更多
Plate structures are employed as important structural components in many engineering applications. Hence, assessing the structural conditions of in-service plate structures is critical to monitoring global structural ...Plate structures are employed as important structural components in many engineering applications. Hence, assessing the structural conditions of in-service plate structures is critical to monitoring global structural health. Modal curvature-based damage detection techniques have recently garnered considerable attention from the research community, and have become a promising vibration-based structural health monitoring solution. However, computing errors arise when calculating modal curvatures from lateral mode shapes, which result from unavoidable measurement errors in the mode shapes as identified from lateral vibration signals; this makes curvature-based algorithms that use a lateral measurement only theoretically feasible, but practically infeasible. Therefore, in this study, long-gauge fiber Bragg grating strain sensors are employed to obtain a modal curvature without a numerical differentiation procedure in order to circumvent the computing errors. Several damage indices based on modal curvatures that were developed to locate beam damage are employed. Both numerical and experimental studies are performed to validate the proposed approach. However, although previous studies have reported relative success with the application of these damage indices on a simple beam, only one damage index demonstrated the capability to locate damage when the stiffness of the local region changed near the sensor.展开更多
In this paper, we propose an efficient method for license plate localization in the images with various situations and complex background. At the first, in order to reduce problems such as low quality and low contrast...In this paper, we propose an efficient method for license plate localization in the images with various situations and complex background. At the first, in order to reduce problems such as low quality and low contrast in the vehicle images, image contrast is enhanced by the two different methods and the best for following is selected. At the second part, vertical edges of the enhanced image are extracted by sobel mask. Then the most of the noise and background edges are removed by an effective algorithm. The output of this stage is given to a morphological filtering to extract the candidate regions and finally we use several geometrical features such as area of the regions, aspect ratio and edge density to eliminate the non-plate regions and segment the plate from the input car image. This method is performed on some real images that have been captured at the different imaging conditions. The appropriate experimental results show that our proposed method is nearly independent to environmental conditions such as lightening, camera angles and camera distance from the automobile, and license plate rotation.展开更多
Considering mass and stiffness of piezoelectric layers and damage effects of composite layers, nonlinear dynamic equations of damaged piezoelectric smart laminated plates are derived. The derivation is based on the Ha...Considering mass and stiffness of piezoelectric layers and damage effects of composite layers, nonlinear dynamic equations of damaged piezoelectric smart laminated plates are derived. The derivation is based on the Hamilton's principle, the higher- order shear deformation plate theory, von Karman type geometrically nonlinear straindisplacement relations, and the strain energy equivalence theory. A negative velocity feedback control algorithm coupling the direct and converse piezoelectric effects is used to realize the active control and damage detection with a closed control loop. Simply supported rectangular laminated plates with immovable edges are used in numerical computation. Influence of the piezoelectric layers' location on the vibration control is in- vestigated. In addition, effects of the degree and location of damage on the sensor output voltage are discussed. A method for damage detection is introduced.展开更多
Microscopy imaging of mouse growth plates is extensively used in biology to understand the effect of specific molecules on various stages of normal bone development and on bone disease. Until now, such image analysis ...Microscopy imaging of mouse growth plates is extensively used in biology to understand the effect of specific molecules on various stages of normal bone development and on bone disease. Until now, such image analysis has been conducted by manual detection. In fact, when existing automated detection techniques were applied, morphological variations across the growth plate and heterogeneity of image background color, including the faint presence of cells (chondrocytes) located deeper in tissue away from the image’s plane of focus, and lack of cell-specific features, interfered with identification of cells. We propose the first method of automated detection and morphometry applicable to images of cells in the growth plate of long bone. Through ad hoc sequential application of the Retinex method, anisotropic diffusion and thresholding, our new cell detection algorithm (CDA) addresses these challenges on bright-field microscopy images of mouse growth plates. Five parameters, chosen by the user in respect of image characteristics, regulate our CDA. Our results demonstrate effectiveness of the proposed numerical method relative to manual methods. Our CDA confirms previously established results regarding chondrocytes’ number, area, orientation, height and shape of normal growth plates. Our CDA also confirms differences previously found between the genetic mutated mouse Smad1/5CKO and its control mouse on fluorescence images. The CDA aims to aid biomedical research by increasing efficiency and consistency of data collection regarding arrangement and characteristics of chondrocytes. Our results suggest that automated extraction of data from microscopy imaging of growth plates can assist in unlocking information on normal and pathological development, key to the underlying biological mechanisms of bone growth.展开更多
Multi-license plate detection in complex scenes is still a challenging task because of multiple vehicle license plates with different sizes and classes in the images having complex background.The edge features of high...Multi-license plate detection in complex scenes is still a challenging task because of multiple vehicle license plates with different sizes and classes in the images having complex background.The edge features of high-density distribution and the high curvature features of stroke turning of Chinese character are important signs to distinguish Chinese license plate from other objects.To accurately detect multiple vehicle license plates with different sizes and classes in complex scenes,a multi-object detection of Chinese license plate method based on improved YOLOv3 network was proposed in this research.The improvements include replacing the residual block of the YOLOv3 backbone network with the Inception-ResNet-A block,imbedding the SPP block into the detection network,cutting the redundant Inception-ResNet-A block to suit for the multi-license plate detection task,and clustering the ground truth boxes of license plates to obtain a new set of anchor boxes.A Chinese vehicle license plate image dataset was built for training and testing the improved network,and the location and class of the license plates in each image were accurately labeled.The dataset has 62,153 pieces of images and 4 classes of China vehicle license plates,almost images have multiple license plates with different sizes.Experiments demonstrated that the multilicense plate detection method obtained 83.4%mAP,98.88%precision,98.17%recall,98.52 F1 score,89.196 BFLOPS and 22 FPS on the test dataset,and whole performance was better than the other five compared networks including YOLOv3,SSD,Faster-RCNN,EfficientDet and RetinaNet.展开更多
This work proposes a method for the detection and identification of parked vehicles stationed. This technique composed many algorithms for the detection, localization, segmentation, extraction and recognition of numbe...This work proposes a method for the detection and identification of parked vehicles stationed. This technique composed many algorithms for the detection, localization, segmentation, extraction and recognition of number plates in images. It is acts of a technology of image processing used to identify the vehicles by their number plates. Knowing that we work on images whose level of gray is sampled with (120×180), resulting from a base of abundant data by PSA. We present two algorithms allowing the detection of the horizontal position of the vehicle: the classical method “horizontal gradients” and our approach “symmetrical method”. In fact, a car seen from the front presents a symmetry plan and by detecting its axis, that one finds its position in the image. A phase of localization is treated using the parameter MGD (Maximum Gradient Difference) which allows locating all the segments of text per horizontal scan. A specific technique of filtering, combining the method of symmetry and the localization by the MGD allows eliminating the blocks which don’t pass by the axis of symmetry and thus find the good block containing the number plate. Once we locate the plate, we use four algorithms that must be realized in order to allow our system to identify a license plate. The first algorithm is adjusting the intensity and the contrast of the image. The second algorithm is segmenting the characters on the plate using profile method. Then extracting and resizing the characters and finally recognizing them by means of optical character recogni-tion OCR. The efficiency of these algorithms is shown using a database of 350 images for the tests. We find a rate of lo-calization of 99.6% on a basis of 350 images with a rate of false alarms (wrong block text) of 0.88% by image.展开更多
Objective Focusing on the problem such as slow scanning speed, complex system design and low light efficiency, a new parallel confocal 3D profile detecting method based on optical fiber technology, which realizes whol...Objective Focusing on the problem such as slow scanning speed, complex system design and low light efficiency, a new parallel confocal 3D profile detecting method based on optical fiber technology, which realizes whole-field confocal detecting, is proposed. Methods The optical fiber plate generates an 2D point light source array, which splits one light beam into N2 subbeams and act the role of pinholes as point source and point detecting to filter the stray light and reflect light. By introducing the construction and working principle of the multi-beam 3D detecting system, the feasibility is investigated. Results Experiment result indicates that the optical fiber technology is applicable in parallel confocal detecting. Conclusion The equipment needn't mechanical rotation. The measuring parameters that influence the detecting can easily be adapted to satisfy different requirments of measurement. Compared with the conventional confocal method, the parallel confocal detecting system using optical fiber plate is simple in the mechanism, the measuring field is larger and the speed is faster.展开更多
License plate recognition technology use widely in intelligent trafficmanagement and control. Researchers have been committed to improving thespeed and accuracy of license plate recognition for nearly 30 years. This p...License plate recognition technology use widely in intelligent trafficmanagement and control. Researchers have been committed to improving thespeed and accuracy of license plate recognition for nearly 30 years. This paperis the first to propose combining the attention mechanism with YOLO-v5and LPRnet to construct a new license plate recognition model (LPR-CBAMNet).Through the attention mechanism CBAM(Convolutional Block AttentionModule), the importance of different feature channels in license platerecognition can be re-calibrated to obtain proper attention to features. Forceinformation to achieve the purpose of improving recognition speed andaccuracy. Experimental results show that the model construction methodis superior in speed and accuracy to traditional license plate recognitionalgorithms. The accuracy of the recognition model of the CBAM model isincreased by two percentage points to 97.2%, and the size of the constructedmodel is only 1.8 M, which can meet the requirements of real-time executionof embedded low-power devices. The codes for training and evaluating LPRCBAM-Net are available under the open-source MIT License at: https://github.com/To2rk/LPR-CBAM-Net.展开更多
This paper introduces the third enhanced version of a genetic algorithm-based technique to allow fast and accurate detection of vehicle plate numbers(VPLN)in challenging image datasets.Since binarization of the input ...This paper introduces the third enhanced version of a genetic algorithm-based technique to allow fast and accurate detection of vehicle plate numbers(VPLN)in challenging image datasets.Since binarization of the input image is the most important and difficult step in the detection of VPLN,a hybrid technique is introduced that fuses the outputs of three fast techniques into a pool of connected components objects(CCO)and hence enriches the solution space with more solution candidates.Due to the combination of the outputs of the three binarization techniques,many CCOs are produced into the output pool from which one or more sequences are to be selected as candidate solutions.The pool is filtered and submitted to a new memetic algorithm to select the best fit sequence of CCOs based on an objective distance between the tested sequence and the defined geometrical relationship matrix that represents the layout of the VPLN symbols inside the concerned plate prototype.Using any of the previous versions will give moderate results but with very low speed.Hence,a new local search is added as a memetic operator to increase the fitness of the best chromosomes based on the linear arrangement of the license plate symbols.The memetic operator speeds up the convergence to the best solution and hence compensates for the overhead of the used hybrid binarization techniques and allows for real-time detection especially after using GPUs in implementing most of the used techniques.Also,a deep convolutional network is used to detect false positives to prevent fake detection of non-plate text or similar patterns.Various image samples with a wide range of scale,orientation,and illumination conditions have been experimented with to verify the effect of the new improvements.Encouraging results with 97.55%detection precision have been reported using the recent challenging public Chinese City Parking Dataset(CCPD)outperforming the author of the dataset by 3.05%and the state-of-the-art technique by 1.45%.展开更多
文摘Electrolysis tanks are used to smeltmetals based on electrochemical principles,and the short-circuiting of the pole plates in the tanks in the production process will lead to high temperatures,thus affecting normal production.Aiming at the problems of time-consuming and poor accuracy of existing infrared methods for high-temperature detection of dense pole plates in electrolysis tanks,an infrared dense pole plate anomalous target detection network YOLOv5-RMF based on You Only Look Once version 5(YOLOv5)is proposed.Firstly,we modified the Real-Time Enhanced Super-Resolution Generative Adversarial Network(Real-ESRGAN)by changing the U-shaped network(U-Net)to Attention U-Net,to preprocess the images;secondly,we propose a new Focus module that introduces the Marr operator,which can provide more boundary information for the network;again,because Complete Intersection over Union(CIOU)cannot accommodate target borders that are increasing and decreasing,replace CIOU with Extended Intersection over Union(EIOU),while the loss function is changed to Focal and Efficient IOU(Focal-EIOU)due to the different difficulty of sample detection.On the homemade dataset,the precision of our method is 94%,the recall is 70.8%,and the map@.5 is 83.6%,which is an improvement of 1.3%in precision,9.7%in recall,and 7%in map@.5 over the original network.The algorithm can meet the needs of electrolysis tank pole plate abnormal temperature detection,which can lay a technical foundation for improving production efficiency and reducing production waste.
基金The National Natural Science Foundation of China(No. 40804015,61101163)
文摘An efficient vehicle detection approach is proposed for traffic surveillance images, which is based on information fusion of vehicle symmetrical contour and license plate position. The vertical symmetry axis of the vehicle contour in an image is. first detected, and then the vertical and the horizontal symmetry axes of the license plate are detected using the symmetry axis of the vehicle contour as a reference. The vehicle location in an image is determined using license plate symmetry axes and the vertical and the horizontal projection maps of the vehicle edge image. A dataset consisting of 450 images (15 classes of vehicles) is used to test the proposed method. The experimental results indicate that compared with the vehicle contour-based, the license plate location-based, the vehicle texture-based and the Gabor feature-based methods, the proposed method is the best with a detection accuracy of 90.7% and an elapsed time of 125 ms.
基金supported by the Ningxia Key Research and Development Program(Talent Introduction Special Project)Project(2022YCZX0013)North Minzu University 2022 School-Level Scientific Research Platform“Digital Agriculture Enabling Ningxia Rural Revitalization Innovation Team”(2022PT_S10)+1 种基金Yinchuan City University-Enterprise Joint Innovation Project(2022XQZD009)Ningxia Key Research and Development Program(Key Project)Project(2023BDE02001).
文摘Wearing helmetswhile riding electric bicycles can significantly reduce head injuries resulting fromtraffic accidents.To effectively monitor compliance,the utilization of target detection algorithms through traffic cameras plays a vital role in identifying helmet usage by electric bicycle riders and recognizing license plates on electric bicycles.However,manual enforcement by traffic police is time-consuming and labor-intensive.Traditional methods face challenges in accurately identifying small targets such as helmets and license plates using deep learning techniques.This paper proposes an enhanced model for detecting helmets and license plates on electric bicycles,addressing these challenges.The proposedmodel improves uponYOLOv8n by deepening the network structure,incorporating weighted connections,and introducing lightweight convolutional modules.These modifications aim to enhance the precision of small target recognition while reducing the model’s parameters,making it suitable for deployment on low-performance devices in real traffic scenarios.Experimental results demonstrate that the model achieves an mAP@0.5 of 91.8%,showing an 11.5%improvement over the baselinemodel,with a 16.2%reduction in parameters.Additionally,themodel achieves a frames per second(FPS)rate of 58,meeting the accuracy and speed requirements for detection in actual traffic scenarios.
文摘Plate structures are employed as important structural components in many engineering applications. Hence, assessing the structural conditions of in-service plate structures is critical to monitoring global structural health. Modal curvature-based damage detection techniques have recently garnered considerable attention from the research community, and have become a promising vibration-based structural health monitoring solution. However, computing errors arise when calculating modal curvatures from lateral mode shapes, which result from unavoidable measurement errors in the mode shapes as identified from lateral vibration signals; this makes curvature-based algorithms that use a lateral measurement only theoretically feasible, but practically infeasible. Therefore, in this study, long-gauge fiber Bragg grating strain sensors are employed to obtain a modal curvature without a numerical differentiation procedure in order to circumvent the computing errors. Several damage indices based on modal curvatures that were developed to locate beam damage are employed. Both numerical and experimental studies are performed to validate the proposed approach. However, although previous studies have reported relative success with the application of these damage indices on a simple beam, only one damage index demonstrated the capability to locate damage when the stiffness of the local region changed near the sensor.
文摘In this paper, we propose an efficient method for license plate localization in the images with various situations and complex background. At the first, in order to reduce problems such as low quality and low contrast in the vehicle images, image contrast is enhanced by the two different methods and the best for following is selected. At the second part, vertical edges of the enhanced image are extracted by sobel mask. Then the most of the noise and background edges are removed by an effective algorithm. The output of this stage is given to a morphological filtering to extract the candidate regions and finally we use several geometrical features such as area of the regions, aspect ratio and edge density to eliminate the non-plate regions and segment the plate from the input car image. This method is performed on some real images that have been captured at the different imaging conditions. The appropriate experimental results show that our proposed method is nearly independent to environmental conditions such as lightening, camera angles and camera distance from the automobile, and license plate rotation.
基金Project supported by the National Natural Science Foundation of China(No.10572049)
文摘Considering mass and stiffness of piezoelectric layers and damage effects of composite layers, nonlinear dynamic equations of damaged piezoelectric smart laminated plates are derived. The derivation is based on the Hamilton's principle, the higher- order shear deformation plate theory, von Karman type geometrically nonlinear straindisplacement relations, and the strain energy equivalence theory. A negative velocity feedback control algorithm coupling the direct and converse piezoelectric effects is used to realize the active control and damage detection with a closed control loop. Simply supported rectangular laminated plates with immovable edges are used in numerical computation. Influence of the piezoelectric layers' location on the vibration control is in- vestigated. In addition, effects of the degree and location of damage on the sensor output voltage are discussed. A method for damage detection is introduced.
文摘Microscopy imaging of mouse growth plates is extensively used in biology to understand the effect of specific molecules on various stages of normal bone development and on bone disease. Until now, such image analysis has been conducted by manual detection. In fact, when existing automated detection techniques were applied, morphological variations across the growth plate and heterogeneity of image background color, including the faint presence of cells (chondrocytes) located deeper in tissue away from the image’s plane of focus, and lack of cell-specific features, interfered with identification of cells. We propose the first method of automated detection and morphometry applicable to images of cells in the growth plate of long bone. Through ad hoc sequential application of the Retinex method, anisotropic diffusion and thresholding, our new cell detection algorithm (CDA) addresses these challenges on bright-field microscopy images of mouse growth plates. Five parameters, chosen by the user in respect of image characteristics, regulate our CDA. Our results demonstrate effectiveness of the proposed numerical method relative to manual methods. Our CDA confirms previously established results regarding chondrocytes’ number, area, orientation, height and shape of normal growth plates. Our CDA also confirms differences previously found between the genetic mutated mouse Smad1/5CKO and its control mouse on fluorescence images. The CDA aims to aid biomedical research by increasing efficiency and consistency of data collection regarding arrangement and characteristics of chondrocytes. Our results suggest that automated extraction of data from microscopy imaging of growth plates can assist in unlocking information on normal and pathological development, key to the underlying biological mechanisms of bone growth.
基金supported by the China Sichuan Science and Technology Program under Grant 2019YFG0299the Fundamental Research Funds of China West Normal University under Grant 19B045the Research Foundation for Talents of China Normal University under Grant 17YC163。
文摘Multi-license plate detection in complex scenes is still a challenging task because of multiple vehicle license plates with different sizes and classes in the images having complex background.The edge features of high-density distribution and the high curvature features of stroke turning of Chinese character are important signs to distinguish Chinese license plate from other objects.To accurately detect multiple vehicle license plates with different sizes and classes in complex scenes,a multi-object detection of Chinese license plate method based on improved YOLOv3 network was proposed in this research.The improvements include replacing the residual block of the YOLOv3 backbone network with the Inception-ResNet-A block,imbedding the SPP block into the detection network,cutting the redundant Inception-ResNet-A block to suit for the multi-license plate detection task,and clustering the ground truth boxes of license plates to obtain a new set of anchor boxes.A Chinese vehicle license plate image dataset was built for training and testing the improved network,and the location and class of the license plates in each image were accurately labeled.The dataset has 62,153 pieces of images and 4 classes of China vehicle license plates,almost images have multiple license plates with different sizes.Experiments demonstrated that the multilicense plate detection method obtained 83.4%mAP,98.88%precision,98.17%recall,98.52 F1 score,89.196 BFLOPS and 22 FPS on the test dataset,and whole performance was better than the other five compared networks including YOLOv3,SSD,Faster-RCNN,EfficientDet and RetinaNet.
文摘This work proposes a method for the detection and identification of parked vehicles stationed. This technique composed many algorithms for the detection, localization, segmentation, extraction and recognition of number plates in images. It is acts of a technology of image processing used to identify the vehicles by their number plates. Knowing that we work on images whose level of gray is sampled with (120×180), resulting from a base of abundant data by PSA. We present two algorithms allowing the detection of the horizontal position of the vehicle: the classical method “horizontal gradients” and our approach “symmetrical method”. In fact, a car seen from the front presents a symmetry plan and by detecting its axis, that one finds its position in the image. A phase of localization is treated using the parameter MGD (Maximum Gradient Difference) which allows locating all the segments of text per horizontal scan. A specific technique of filtering, combining the method of symmetry and the localization by the MGD allows eliminating the blocks which don’t pass by the axis of symmetry and thus find the good block containing the number plate. Once we locate the plate, we use four algorithms that must be realized in order to allow our system to identify a license plate. The first algorithm is adjusting the intensity and the contrast of the image. The second algorithm is segmenting the characters on the plate using profile method. Then extracting and resizing the characters and finally recognizing them by means of optical character recogni-tion OCR. The efficiency of these algorithms is shown using a database of 350 images for the tests. We find a rate of lo-calization of 99.6% on a basis of 350 images with a rate of false alarms (wrong block text) of 0.88% by image.
文摘Objective Focusing on the problem such as slow scanning speed, complex system design and low light efficiency, a new parallel confocal 3D profile detecting method based on optical fiber technology, which realizes whole-field confocal detecting, is proposed. Methods The optical fiber plate generates an 2D point light source array, which splits one light beam into N2 subbeams and act the role of pinholes as point source and point detecting to filter the stray light and reflect light. By introducing the construction and working principle of the multi-beam 3D detecting system, the feasibility is investigated. Results Experiment result indicates that the optical fiber technology is applicable in parallel confocal detecting. Conclusion The equipment needn't mechanical rotation. The measuring parameters that influence the detecting can easily be adapted to satisfy different requirments of measurement. Compared with the conventional confocal method, the parallel confocal detecting system using optical fiber plate is simple in the mechanism, the measuring field is larger and the speed is faster.
基金supported in part by the Natural Science Foundation of Hainan Province under Grant 621MS017the National Natural Science Foundation of China under Grant U19B2044.
文摘License plate recognition technology use widely in intelligent trafficmanagement and control. Researchers have been committed to improving thespeed and accuracy of license plate recognition for nearly 30 years. This paperis the first to propose combining the attention mechanism with YOLO-v5and LPRnet to construct a new license plate recognition model (LPR-CBAMNet).Through the attention mechanism CBAM(Convolutional Block AttentionModule), the importance of different feature channels in license platerecognition can be re-calibrated to obtain proper attention to features. Forceinformation to achieve the purpose of improving recognition speed andaccuracy. Experimental results show that the model construction methodis superior in speed and accuracy to traditional license plate recognitionalgorithms. The accuracy of the recognition model of the CBAM model isincreased by two percentage points to 97.2%, and the size of the constructedmodel is only 1.8 M, which can meet the requirements of real-time executionof embedded low-power devices. The codes for training and evaluating LPRCBAM-Net are available under the open-source MIT License at: https://github.com/To2rk/LPR-CBAM-Net.
文摘This paper introduces the third enhanced version of a genetic algorithm-based technique to allow fast and accurate detection of vehicle plate numbers(VPLN)in challenging image datasets.Since binarization of the input image is the most important and difficult step in the detection of VPLN,a hybrid technique is introduced that fuses the outputs of three fast techniques into a pool of connected components objects(CCO)and hence enriches the solution space with more solution candidates.Due to the combination of the outputs of the three binarization techniques,many CCOs are produced into the output pool from which one or more sequences are to be selected as candidate solutions.The pool is filtered and submitted to a new memetic algorithm to select the best fit sequence of CCOs based on an objective distance between the tested sequence and the defined geometrical relationship matrix that represents the layout of the VPLN symbols inside the concerned plate prototype.Using any of the previous versions will give moderate results but with very low speed.Hence,a new local search is added as a memetic operator to increase the fitness of the best chromosomes based on the linear arrangement of the license plate symbols.The memetic operator speeds up the convergence to the best solution and hence compensates for the overhead of the used hybrid binarization techniques and allows for real-time detection especially after using GPUs in implementing most of the used techniques.Also,a deep convolutional network is used to detect false positives to prevent fake detection of non-plate text or similar patterns.Various image samples with a wide range of scale,orientation,and illumination conditions have been experimented with to verify the effect of the new improvements.Encouraging results with 97.55%detection precision have been reported using the recent challenging public Chinese City Parking Dataset(CCPD)outperforming the author of the dataset by 3.05%and the state-of-the-art technique by 1.45%.
基金Acknowledgements: The project is supported by the National Natural Science Foundation of China (No. 40471101) and Research Foundation of Nanjing University of Information Science and Technology.