In this paper, we investigate the positive solutions of fourth-order elastic beam equations with both end-points simply supported. By using the approximation theorem of completely continuous operators and the global b...In this paper, we investigate the positive solutions of fourth-order elastic beam equations with both end-points simply supported. By using the approximation theorem of completely continuous operators and the global bifurcation techniques, we obtain the existence of positive solutions of elastic beam equations under some conditions concerning the first eigenvalues corresponding to the relevant linear operators, when the nonlinear term is non-singular or singular, and allowed to change sign.展开更多
The existence of n positive solutions is studied for a class of fourth-order elastic beam equations where one end is fixed and other end is movable. Here, n is an arbitrary natural number. Our results show that the cl...The existence of n positive solutions is studied for a class of fourth-order elastic beam equations where one end is fixed and other end is movable. Here, n is an arbitrary natural number. Our results show that the class of equations may have n positive solutions provided the “heights” of the nonlinear term are appropriate on some bounded sets.展开更多
This paper deals with multiplicity results for nonlinear elastic equations of the typewheregi[0,1] X R R satisfies Caratheodory condition L2[0,1]. The solvability of this problem has been studied by several authors, b...This paper deals with multiplicity results for nonlinear elastic equations of the typewheregi[0,1] X R R satisfies Caratheodory condition L2[0,1]. The solvability of this problem has been studied by several authors, but there isn't any multiplicity result until now to the author's knowledge. By combining the Lyapunov-Schmidt procedure with the technique of connected set, we establish several multiplicity results under suitable condition.展开更多
By using the degree theory on cone an existence theorem of positive solution for a class of fourth-order two-point BVP's is obtained. This class of BVP's usually describes the deformation of the elastic beam w...By using the degree theory on cone an existence theorem of positive solution for a class of fourth-order two-point BVP's is obtained. This class of BVP's usually describes the deformation of the elastic beam with both fixed end-points.展开更多
This paper investigates the boundary value problem for elastic beam equation of the formu″″(t) q(t)f(t, u(t),u′(t),u″(t),u′″(t)), 0〈t〈1,with the boundary conditionsu=(0)=u′(1)=u″(0)=u′″...This paper investigates the boundary value problem for elastic beam equation of the formu″″(t) q(t)f(t, u(t),u′(t),u″(t),u′″(t)), 0〈t〈1,with the boundary conditionsu=(0)=u′(1)=u″(0)=u′″(1)=0.The boundary conditions describe the deformation of an elastic beam simply supported at left and clamped at right by sliding clamps. By using Leray-Schauder nonlinear alternate, Leray-Schauder fixed point theorem and a fixed point theorem due to Avery and Peterson, we establish some results on the existence and multiplicity of positive solutions to the boundary value problem. Our results extend and improve some recent work in the literature.展开更多
In this paper we investigate the existence of positive solution for a class of fourth_order superlinear semipositone eigenvalue problems. This class of problems usually describes the deformation of the elastic beam wh...In this paper we investigate the existence of positive solution for a class of fourth_order superlinear semipositone eigenvalue problems. This class of problems usually describes the deformation of the elastic beam whose both end_points are fixed.展开更多
In this paper, we consider the partial differential equation of an elastic beam with structuraldamping by boundary feedback control. First, we prove this closed system is well--posed; then weestablish tbe exponential ...In this paper, we consider the partial differential equation of an elastic beam with structuraldamping by boundary feedback control. First, we prove this closed system is well--posed; then weestablish tbe exponential stability for this elastic system by using a theorem whichbelongs to F. L.Huang; finally, we discuss the distribution and multiplicity of the spectrum of this system. Theseresults are very important and useful in practical applications.展开更多
基金Supported by the National Natural Science Foundation of China(11501260)Supported by the National Natural Science Foundation of Suqian City(Z201444)
文摘In this paper, we investigate the positive solutions of fourth-order elastic beam equations with both end-points simply supported. By using the approximation theorem of completely continuous operators and the global bifurcation techniques, we obtain the existence of positive solutions of elastic beam equations under some conditions concerning the first eigenvalues corresponding to the relevant linear operators, when the nonlinear term is non-singular or singular, and allowed to change sign.
基金Sponsored by the National Natural Science Foundation of China(Grant No.10571085).
文摘The existence of n positive solutions is studied for a class of fourth-order elastic beam equations where one end is fixed and other end is movable. Here, n is an arbitrary natural number. Our results show that the class of equations may have n positive solutions provided the “heights” of the nonlinear term are appropriate on some bounded sets.
文摘This paper deals with multiplicity results for nonlinear elastic equations of the typewheregi[0,1] X R R satisfies Caratheodory condition L2[0,1]. The solvability of this problem has been studied by several authors, but there isn't any multiplicity result until now to the author's knowledge. By combining the Lyapunov-Schmidt procedure with the technique of connected set, we establish several multiplicity results under suitable condition.
文摘By using the degree theory on cone an existence theorem of positive solution for a class of fourth-order two-point BVP's is obtained. This class of BVP's usually describes the deformation of the elastic beam with both fixed end-points.
基金supported by the Natural Science Foundation of Zhejiang Province of China (Y605144)
文摘This paper investigates the boundary value problem for elastic beam equation of the formu″″(t) q(t)f(t, u(t),u′(t),u″(t),u′″(t)), 0〈t〈1,with the boundary conditionsu=(0)=u′(1)=u″(0)=u′″(1)=0.The boundary conditions describe the deformation of an elastic beam simply supported at left and clamped at right by sliding clamps. By using Leray-Schauder nonlinear alternate, Leray-Schauder fixed point theorem and a fixed point theorem due to Avery and Peterson, we establish some results on the existence and multiplicity of positive solutions to the boundary value problem. Our results extend and improve some recent work in the literature.
文摘In this paper we investigate the existence of positive solution for a class of fourth_order superlinear semipositone eigenvalue problems. This class of problems usually describes the deformation of the elastic beam whose both end_points are fixed.
文摘In this paper, we consider the partial differential equation of an elastic beam with structuraldamping by boundary feedback control. First, we prove this closed system is well--posed; then weestablish tbe exponential stability for this elastic system by using a theorem whichbelongs to F. L.Huang; finally, we discuss the distribution and multiplicity of the spectrum of this system. Theseresults are very important and useful in practical applications.