In this paper, the interaction problem of a rigid line inclusion and an elastic circular inclusion has been reduced to solve a normal Cauchy-type singular integral equation. The stress intensity, factors at the ends o...In this paper, the interaction problem of a rigid line inclusion and an elastic circular inclusion has been reduced to solve a normal Cauchy-type singular integral equation. The stress intensity, factors at the ends of the rigid line inclusion and the interface stresses of the inclusions are obtained.展开更多
Based on the generalized England-Spencer plate theory, the equilibrium of a transversely isotropic functionally graded plate containing an elastic inclusion is studied. The general solutions of the governing equations...Based on the generalized England-Spencer plate theory, the equilibrium of a transversely isotropic functionally graded plate containing an elastic inclusion is studied. The general solutions of the governing equations are expressed by four analytic functions α(ζ), β(ζ), φ(ζ), and ψ(ζ) when no transverse forces are acting on the surfaces of the plate. Axisymmetric problems of a functionally graded circular plate and an infinite func- tionally graded plate containing a circular hole subject to loads applied on the cylindrical boundaries of the plate are firstly investigated. On this basis, the three-dimensional (3D) elasticity solutions are then obtained for a functionally graded infinite plate containing an elastic circular inclusion. When the material is degenerated into the homogeneous one, the present elasticity solutions are exactly the same as the ones obtained based on the plane stress elasticity, thus validating the present analysis in a certain sense.展开更多
文摘In this paper, the interaction problem of a rigid line inclusion and an elastic circular inclusion has been reduced to solve a normal Cauchy-type singular integral equation. The stress intensity, factors at the ends of the rigid line inclusion and the interface stresses of the inclusions are obtained.
基金Project supported by the National Natural Science Foundation of China(Nos.11202188,11321202,and 11172263)
文摘Based on the generalized England-Spencer plate theory, the equilibrium of a transversely isotropic functionally graded plate containing an elastic inclusion is studied. The general solutions of the governing equations are expressed by four analytic functions α(ζ), β(ζ), φ(ζ), and ψ(ζ) when no transverse forces are acting on the surfaces of the plate. Axisymmetric problems of a functionally graded circular plate and an infinite func- tionally graded plate containing a circular hole subject to loads applied on the cylindrical boundaries of the plate are firstly investigated. On this basis, the three-dimensional (3D) elasticity solutions are then obtained for a functionally graded infinite plate containing an elastic circular inclusion. When the material is degenerated into the homogeneous one, the present elasticity solutions are exactly the same as the ones obtained based on the plane stress elasticity, thus validating the present analysis in a certain sense.