This paper is a continuation of [1]. An example is discussed in derail to illustrate the second order effects. Numerical calculations for the second order elastic material for the z-direction displacement and the stre...This paper is a continuation of [1]. An example is discussed in derail to illustrate the second order effects. Numerical calculations for the second order elastic material for the z-direction displacement and the stress t(rz) are carried out. It is found that the second order effect is to reduce z-direction displacement and to decrease t(rz)inside the circle but to increase its value outside the circle.展开更多
This paper is a continuation of [1]. A closed form solution to the second order elasticity problem, when an isotropic compressible elastic half-space undergoes a deformation owing to a non-uniformly distributed shear ...This paper is a continuation of [1]. A closed form solution to the second order elasticity problem, when an isotropic compressible elastic half-space undergoes a deformation owing to a non-uniformly distributed shear load, is presented. The method of integral transform is employed to determine the solutions.展开更多
Dynamic stress concentration and pore pressure concentration around an infinitely long cylindrical cavity of circular cross-section subjected to harmonic plane dilatational waves in fluid-saturated porous elastic half...Dynamic stress concentration and pore pressure concentration around an infinitely long cylindrical cavity of circular cross-section subjected to harmonic plane dilatational waves in fluid-saturated porous elastic half-space were obtained by a complex function method based on potential function and multi-polar coordinate. The steady state Biot’s dynamic field equations of porous elastic solid with a viscous liquid were uncoupled into Helmholtz equations via given potential functions. A circular cavity with large radius is used to replace the straight boundary of the saturated porous elastic half-space. The stresses and pore pressures were obtained by using complex functions in multi-polar coordinates with certain boundary conditions of the solid matrix and the fluid matrix. The approximate solutions were compared to existing numerical solutions. Then the variations of the coefficients of dynamic stress concentration and the pore pressures concentration on boundaries of the cavity were discussed with different parameter conditions. The results of the given numerical example indicate that the method used is useful and efficient to the scattering and dynamic stress concentration of plane dilatational waves in saturated porous elastic half-space.展开更多
Aim To extend several fundamental theorems of conventional elasticity theory to quasicrystalelasticity theory. Methods The basic governing equations of quasicrystal elasticity theory and Gauss's theorem were appli...Aim To extend several fundamental theorems of conventional elasticity theory to quasicrystalelasticity theory. Methods The basic governing equations of quasicrystal elasticity theory and Gauss's theorem were applied in the derivation. Results and Conclusion The principle of virtual work, Betti's reciprocal theorem and the uniqueness theorem of quasicrystal elasticity theory are proud, and some conservative integrals in quasicrystal elasticty theory are obtained.展开更多
With the introduction of Poisson's ratio in the expression of Young's modulus,nearly all the theoretical values of the various elastic moduli for the alkaline earth metals and rare earth elements can be greatl...With the introduction of Poisson's ratio in the expression of Young's modulus,nearly all the theoretical values of the various elastic moduli for the alkaline earth metals and rare earth elements can be greatly refined, with the single exception of the theoreticalvalue of Young's modulus for Pr which is slightly increased This points to the validityof the new theory, that the bulk modulus is independent of the Poisson's ratio, and further that the valency electron structures of solids as determined by Yu's theory are correct.展开更多
This paper deals with off-diagonal operator matrices and their applications in elasticity theory. Two kinds of completeness of the system of eigenvectors are proven, in terms of those of the compositions of two block ...This paper deals with off-diagonal operator matrices and their applications in elasticity theory. Two kinds of completeness of the system of eigenvectors are proven, in terms of those of the compositions of two block operators in the off-diagonal operator matrices. Using these results, the double eigenfunction expansion method for solving upper triangular matrix differential systems is proposed. Moreover, we apply the method to the two-dimensional elasticity problem and the problem of bending of rectangular thin plates on elastic foundation.展开更多
A novel size-dependent model is developed herein to study the bending behavior of beam-type micro/nano-structures considering combined effects of nonlocality and micro-rotational degrees of freedom. To accomplish this...A novel size-dependent model is developed herein to study the bending behavior of beam-type micro/nano-structures considering combined effects of nonlocality and micro-rotational degrees of freedom. To accomplish this aim, the micropolar theory is combined with the nonlocal elasticity. To consider the nonlocality, both integral (original) and differential formulations of Eringen’s nonlocal theory are considered. The beams are considered to be Timoshenko-type, and the governing equations are derived in the variational form through Hamilton’s principle. The relations are written in an appropriate matrix-vector representation that can be readily utilized in numerical approaches. A finite element (FE) approach is also proposed for the solution procedure. Parametric studies are conducted to show the simultaneous nonlocal and micropolar effects on the bending response of small-scale beams under different boundary conditions.展开更多
According to the basic idea of dual-complementarity, in a simple and unified way proposed by the author, various energy principles in theory of elastic materials with voids can be established systematically, In this p...According to the basic idea of dual-complementarity, in a simple and unified way proposed by the author, various energy principles in theory of elastic materials with voids can be established systematically, In this paper, an important integral relation is given, which can be considered essentially as the generalized pr- inciple of virtual work. Based on this relation, it is possible not only to obtain the principle of virtual work and the reciprocal theorem of work in theory of elastic materials with voids, but also to derive systematically the complementary functionals for the eight-field, six-field, four-field and two-field generalized variational principles, and the principle of minimum potential and complementary energies. Furthermore, with this appro ach, the intrinsic relationship among various principles can be explained clearly.展开更多
According to the basic idea of dual-complementarity,in a simple and unified way proposed by the author,some basic principles in dynamic theory of elastic materials with voids can be established sys- tematically.In thi...According to the basic idea of dual-complementarity,in a simple and unified way proposed by the author,some basic principles in dynamic theory of elastic materials with voids can be established sys- tematically.In this paper, an important integral relation in terms of convolutions is given,which can be con- sidered as the generalized principle of virtual work in mechanics.Based on this relation,it is possible not on- ly to obtain the principle of virtual work and the reciprocal theorem in dynamic theory of elastic materials with voids,but also to derive systematically the complementary functionals for the eight-field,six-field, four-field and two-field simplified Gurtin-type variational principles.Furthermore,with this approach,the in- trinsic relationship among various principles can be explained clearly.展开更多
The dynamic behavior of a rectangular crack in a three-dimensional (3D) orthotropic elastic medium is investigated under a harmonic stress wave based on the non-local theory. The two-dimensional (2D) Fourier trans...The dynamic behavior of a rectangular crack in a three-dimensional (3D) orthotropic elastic medium is investigated under a harmonic stress wave based on the non-local theory. The two-dimensional (2D) Fourier transform is applied, and the mixed- boundary value problems are converted into three pairs of dual integral equations with the unknown variables being the displacement jumps across the crack surfaces. The effects of the geometric shape of the rectangular crack, the circular frequency of the incident waves, and the lattice parameter of the orthotropic elastic medium on the dynamic stress field near the crack edges are analyzed. The present solution exhibits no stress singularity at the rectangular crack edges, and the dynamic stress field near the rectangular crack edges is finite.展开更多
Mechanical model of anchorage surrounding rock considering tray effect was established based on elastic theory,in order to study the mechanism of bolt supporting.Elastic solutions of normal force at point in the inter...Mechanical model of anchorage surrounding rock considering tray effect was established based on elastic theory,in order to study the mechanism of bolt supporting.Elastic solutions of normal force at point in the interior of a semi-infnite solid were obtained by means of classical displacement function method in elasticity.The factors which influence stress of bolted surrounding rock,such as the length of bolt and tray effect,were analyzed.The absolute value of stress along bolt axes decreased rapidly with an increase in radical distance and the maximum appeared near ends of bolt.With increasing radical distance,the value of radical stress changed from positive to negative roughly and then increased to zero,with maximum at the middle of bolt.The evolution of hoop stress as radical distance increasing was similar with stress along bolt axes.With an increase in depth,the radical effect ranges of all normal stress components were reduced.These suggest that the effect from tray on stress along bolt axes of bolted surrounding rock could be neglected,except near surface of surrounding rock.展开更多
In this paper, a rotational invariant of interaction energy between two biaxial-shaped molecules is assumed and in the mean field approximation, nine elastic constants for simple distortion patterns in biaxial nematic...In this paper, a rotational invariant of interaction energy between two biaxial-shaped molecules is assumed and in the mean field approximation, nine elastic constants for simple distortion patterns in biaxial nematics are derived in terms of the thermal average (Dmn^(l)) (Dm'n'^(l')), where Dmn^(l) is the Wigner rotation matrix. In the lowest order terms, the elastic constants depend on coefficients Γ,Γ', λ, order parameters Q0 = Q0(D00^(2)) +Q2(D02^(2)+D0-2^(2)) and Q2 = Q0(D20^(2)) + Q2(D22^(2)+D2-2^(2)). Here Γ and Γ' depend on the function form of molecular interaction energy vj′j″j (τ12) and probability function fk′k″k (τ12), where r12 is the distance between two molecules, and λ is proportional to temperature. Q0 and Q2 are parameters related to multiple moments of molecules. Comparing these results with those obtained from Landau-de Gennes theory, we have obtained relationships between coefficients, order parameters used in both theories. In the special case of uniaxial nematics, both results are reduced to a degenerate case where K11=K33.展开更多
Platinum(Pt)-based noble metal catalysts(PGMs)are the most widely used commercial catalysts,but they have the problems of high cost,low reserves,and susceptibility to small-molecule toxicity.Transition metal oxides(TM...Platinum(Pt)-based noble metal catalysts(PGMs)are the most widely used commercial catalysts,but they have the problems of high cost,low reserves,and susceptibility to small-molecule toxicity.Transition metal oxides(TMOs)are regarded as potential substitutes for PGMs because of their stability in oxidizing environments and excellent catalytic performance.In this study,comprehensive investigation into the influence of elastic strains on the adsorption energies of carbon(C),hydrogen(H)and oxygen(O)on TMOs was conducted.Based on density functional theory(DFT)calculations,these effects in both tetragonal structures(PtO_(2),PdO_(2))and hexagonal structures(ZnO,CdO),along with their respective transition metals were systematically explored.It was identified that the optimal adsorption sites on metal oxides pinpointed the top of oxygen or the top of metal atom,while face-centered cubic(FCC)and hexagonal close-packed(HCP)holes were preferred for the transition metals.Furthermore,under the influence of elastic strains,the results demonstrated significant disparities in the adsorption energies of H and O between oxides and transition metals.Despite these differences,the effect of elastic strains on the adsorption energies of C,H and O on TMOs mirrored those on transition metals:adsorption energies increased under compressive strains,indicating weaker adsorption,and decreased under tension strains,indicating stronger adsorption.This behavior was rationalized based on the d-band model for adsorption atop a metallic atom or the p-band model for adsorption atop an oxygen atom.Consequently,elastic strains present a promising avenue for tailoring the catalytic properties of TMOs.展开更多
Considerable efforts are being made to transition current lithium-ion and sodium-ion batteries towards the use of solid-state electrolytes.Computational methods,specifically nudged elastic band(NEB)and molecular dynam...Considerable efforts are being made to transition current lithium-ion and sodium-ion batteries towards the use of solid-state electrolytes.Computational methods,specifically nudged elastic band(NEB)and molecular dynamics(MD)methods,provide powerful tools for the design of solid-state electrolytes.The MD method is usually the choice for studying the materials involving complex multiple diffusion paths or having disordered structures.However,it relies on simulations at temperatures much higher than working temperature.This paper studies the reliability of the MD method using the system of Na diffusion in MgO as a benchmark.We carefully study the convergence behavior of the MD method and demonstrate that total effective simulation time of 12 ns can converge the calculated diffusion barrier to about 0.01 eV.The calculated diffusion barrier is 0.31 eV from both methods.The diffusion coefficients at room temperature are 4.3×10^(-9) cm^(2)⋅s^(−1) and 2.2×10^(-9) cm^(2)⋅s^(−1),respectively,from the NEB and MD methods.Our results justify the reliability of the MD method,even though high temperature simulations have to be employed to overcome the limitation on simulation time.展开更多
Under high pressure, the long believed single-phase material CaB6 was latterly discovered to have a new phase tI56. Based on the density-functional theory, the pressure effects on the structural and elastic properties...Under high pressure, the long believed single-phase material CaB6 was latterly discovered to have a new phase tI56. Based on the density-functional theory, the pressure effects on the structural and elastic properties of CaB6 are obtained. The calculated bulk, shear, and Young’s moduli of the recently synthesized high pressure phase tI56-CaB6 are larger than those of the low pressure phase. Moreover, the high pressure phase of CaB6 has ductile behaviors, and its ductility increases with the increase of pressure. On the contrary, the calculated results indicate that the low pressure phase of CaB6 is brittle. The calculated Debye temperature indicates that the thermal conductivity of CaB6 is not very good. Furthermore, based on the Christoffel equation, the slowness surface of the acoustic waves is obtained.展开更多
A theory of elasticity for the bending of orthogonal anisotropic beams was developed in this paper by analogy with the special case, which can be obtained by applying the theory of elasticity for bending of transverse...A theory of elasticity for the bending of orthogonal anisotropic beams was developed in this paper by analogy with the special case, which can be obtained by applying the theory of elasticity for bending of transversely isotropic plates to the problems of two dimensions. The authors also presented a method to solve the problems of bending of orthogonal anisotropic beams and a new theory of the deep-beam whose ratio of depth to length is larger. It is pointed out that Reissner's theory which takes into account the effect of transverse shear deformation is not suitable for the components of stress in our case.展开更多
Monitoring the change in horizontal stress from the geophysical data is a tough challenge, and it has a crucial impact on broad practical scenarios which involve reservoir exploration and development, carbon dioxide (...Monitoring the change in horizontal stress from the geophysical data is a tough challenge, and it has a crucial impact on broad practical scenarios which involve reservoir exploration and development, carbon dioxide (CO_(2)) injection and storage, shallow surface prospecting and deep-earth structure description. The change in in-situ stress induced by hydrocarbon production and localized tectonic movements causes the changes in rock mechanic properties (e.g. wave velocities, density and anisotropy) and further causes the changes in seismic amplitudes, phases and travel times. In this study, the nonlinear elasticity theory that regards the rock skeleton (solid phase) and pore fluid as an effective whole is used to characterize the effect of horizontal principal stress on rock overall elastic properties and the stress-dependent anisotropy parameters are therefore formulated. Then the approximate P-wave, SV-wave and SH-wave angle-dependent reflection coefficient equations for the horizontal-stress-induced anisotropic media are proposed. It is shown that, on the different reflectors, the stress-induced relative changes in reflectivities (i.e., relative difference) of elastic parameters (i.e., P- and S-wave velocities and density) are much less than the changes in contrasts of anisotropy parameters. Therefore, the effects of stress change on the reflectivities of three elastic parameters are reasonably neglected to further propose an AVO inversion approach incorporating P-, SH- and SV-wave information to estimate the change in horizontal principal stress from the corresponding time-lapse seismic data. Compared with the existing methods, our method eliminates the need for man-made rock-physical or fitting parameters, providing more stable predictive power. 1D test illustrates that the estimated result from time-lapse P-wave reflection data shows the most reasonable agreement with the real model, while the estimated result from SH-wave reflection data shows the largest bias. 2D test illustrates the feasibility of the proposed inversion method for estimating the change in horizontal stress from P-wave time-lapse seismic data.展开更多
In this paper, the free vibration of magneto- electro-elastic (MEE) nanoplates is investigated based on the nonlocal theory and Kirchhoff plate theory. The MEE nanoplate is assumed as all edges simply supported rect...In this paper, the free vibration of magneto- electro-elastic (MEE) nanoplates is investigated based on the nonlocal theory and Kirchhoff plate theory. The MEE nanoplate is assumed as all edges simply supported rectan gular plate subjected to the biaxial force, external electric potential, external magnetic potential, and temperature rise. By using the Hamilton's principle, the governing equations and boundary conditions are derived and then solved analytically to obtain the natural frequencies of MEE nanoplates. A parametric study is presented to examine the effect of the nonlocal parameter, thermo-magneto-electro-mechanical loadings and aspect ratio on the vibration characteristics of MEE nanoplates. It is found that the natural frequency is quite sensitive to the mechanical loading, electric loading and magnetic loading, while it is insensitive to the thermal loading.展开更多
As suggested by the title, this extensive book is concerned with crack and contact prob- lems in linear elasticity. However, in general, it is intended for a wide audience ranging from engineers to mathematical physic...As suggested by the title, this extensive book is concerned with crack and contact prob- lems in linear elasticity. However, in general, it is intended for a wide audience ranging from engineers to mathematical physicists. Indeed, numerous problems of both academic and tech- nological interest in electro-magnetics, acoustics, solid and fluid dynamics, etc. are actually related to each other and governed by the same mixed boundary value problems from a unified mathematical standpoint展开更多
The multiple scattering theory has been a powerful tool in determining the effective properties of heterogeneous materials. In this paper , a simple relationship between the scattering theory and the micromechanics th...The multiple scattering theory has been a powerful tool in determining the effective properties of heterogeneous materials. In this paper , a simple relationship between the scattering theory and the micromechanics theory based on the Eshelby principle has been suggested. According to the relationship, a new and simple approximate solution to the exact multiple scattering theory has been given in terms of Eshelby' s S-tensor. The solution easily shows those known results for isotropic composites with spherical inclusions and for tracnsversely isotropic composites, and first gives non-setf-consistent (average t-matrix) and symmetric self-consistent (effective medium or coherent potential) approximate results for isotropic composites with spheroidal inclusions.展开更多
文摘This paper is a continuation of [1]. An example is discussed in derail to illustrate the second order effects. Numerical calculations for the second order elastic material for the z-direction displacement and the stress t(rz) are carried out. It is found that the second order effect is to reduce z-direction displacement and to decrease t(rz)inside the circle but to increase its value outside the circle.
文摘This paper is a continuation of [1]. A closed form solution to the second order elasticity problem, when an isotropic compressible elastic half-space undergoes a deformation owing to a non-uniformly distributed shear load, is presented. The method of integral transform is employed to determine the solutions.
文摘Dynamic stress concentration and pore pressure concentration around an infinitely long cylindrical cavity of circular cross-section subjected to harmonic plane dilatational waves in fluid-saturated porous elastic half-space were obtained by a complex function method based on potential function and multi-polar coordinate. The steady state Biot’s dynamic field equations of porous elastic solid with a viscous liquid were uncoupled into Helmholtz equations via given potential functions. A circular cavity with large radius is used to replace the straight boundary of the saturated porous elastic half-space. The stresses and pore pressures were obtained by using complex functions in multi-polar coordinates with certain boundary conditions of the solid matrix and the fluid matrix. The approximate solutions were compared to existing numerical solutions. Then the variations of the coefficients of dynamic stress concentration and the pore pressures concentration on boundaries of the cavity were discussed with different parameter conditions. The results of the given numerical example indicate that the method used is useful and efficient to the scattering and dynamic stress concentration of plane dilatational waves in saturated porous elastic half-space.
文摘Aim To extend several fundamental theorems of conventional elasticity theory to quasicrystalelasticity theory. Methods The basic governing equations of quasicrystal elasticity theory and Gauss's theorem were applied in the derivation. Results and Conclusion The principle of virtual work, Betti's reciprocal theorem and the uniqueness theorem of quasicrystal elasticity theory are proud, and some conservative integrals in quasicrystal elasticty theory are obtained.
文摘With the introduction of Poisson's ratio in the expression of Young's modulus,nearly all the theoretical values of the various elastic moduli for the alkaline earth metals and rare earth elements can be greatly refined, with the single exception of the theoreticalvalue of Young's modulus for Pr which is slightly increased This points to the validityof the new theory, that the bulk modulus is independent of the Poisson's ratio, and further that the valency electron structures of solids as determined by Yu's theory are correct.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10962004 and 11061019)the Doctoral Foundation of Inner Mongolia(Grant Nos.2009BS0101 and 2010MS0110)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20070126002)the Chunhui Program of the Ministry of Education of China(Grant No.Z2009-1-01010)
文摘This paper deals with off-diagonal operator matrices and their applications in elasticity theory. Two kinds of completeness of the system of eigenvectors are proven, in terms of those of the compositions of two block operators in the off-diagonal operator matrices. Using these results, the double eigenfunction expansion method for solving upper triangular matrix differential systems is proposed. Moreover, we apply the method to the two-dimensional elasticity problem and the problem of bending of rectangular thin plates on elastic foundation.
文摘A novel size-dependent model is developed herein to study the bending behavior of beam-type micro/nano-structures considering combined effects of nonlocality and micro-rotational degrees of freedom. To accomplish this aim, the micropolar theory is combined with the nonlocal elasticity. To consider the nonlocality, both integral (original) and differential formulations of Eringen’s nonlocal theory are considered. The beams are considered to be Timoshenko-type, and the governing equations are derived in the variational form through Hamilton’s principle. The relations are written in an appropriate matrix-vector representation that can be readily utilized in numerical approaches. A finite element (FE) approach is also proposed for the solution procedure. Parametric studies are conducted to show the simultaneous nonlocal and micropolar effects on the bending response of small-scale beams under different boundary conditions.
基金The project supported by the National Natural Science Foundation of China
文摘According to the basic idea of dual-complementarity, in a simple and unified way proposed by the author, various energy principles in theory of elastic materials with voids can be established systematically, In this paper, an important integral relation is given, which can be considered essentially as the generalized pr- inciple of virtual work. Based on this relation, it is possible not only to obtain the principle of virtual work and the reciprocal theorem of work in theory of elastic materials with voids, but also to derive systematically the complementary functionals for the eight-field, six-field, four-field and two-field generalized variational principles, and the principle of minimum potential and complementary energies. Furthermore, with this appro ach, the intrinsic relationship among various principles can be explained clearly.
基金The project supported by the Foundation of Zhongshan University Advanced Research Center
文摘According to the basic idea of dual-complementarity,in a simple and unified way proposed by the author,some basic principles in dynamic theory of elastic materials with voids can be established sys- tematically.In this paper, an important integral relation in terms of convolutions is given,which can be con- sidered as the generalized principle of virtual work in mechanics.Based on this relation,it is possible not on- ly to obtain the principle of virtual work and the reciprocal theorem in dynamic theory of elastic materials with voids,but also to derive systematically the complementary functionals for the eight-field,six-field, four-field and two-field simplified Gurtin-type variational principles.Furthermore,with this approach,the in- trinsic relationship among various principles can be explained clearly.
基金Project supported by the National Natural Science Foundation of China(Nos.11272105 and 11572101)
文摘The dynamic behavior of a rectangular crack in a three-dimensional (3D) orthotropic elastic medium is investigated under a harmonic stress wave based on the non-local theory. The two-dimensional (2D) Fourier transform is applied, and the mixed- boundary value problems are converted into three pairs of dual integral equations with the unknown variables being the displacement jumps across the crack surfaces. The effects of the geometric shape of the rectangular crack, the circular frequency of the incident waves, and the lattice parameter of the orthotropic elastic medium on the dynamic stress field near the crack edges are analyzed. The present solution exhibits no stress singularity at the rectangular crack edges, and the dynamic stress field near the rectangular crack edges is finite.
基金supported by the Special Funds of the National Natural Science Foundation of China(No.51227003)the National Natural Science Foundation of China(No.51074166)the Universities Natural Science Research Project of Jiangsu Province(No.11kjd13002)
文摘Mechanical model of anchorage surrounding rock considering tray effect was established based on elastic theory,in order to study the mechanism of bolt supporting.Elastic solutions of normal force at point in the interior of a semi-infnite solid were obtained by means of classical displacement function method in elasticity.The factors which influence stress of bolted surrounding rock,such as the length of bolt and tray effect,were analyzed.The absolute value of stress along bolt axes decreased rapidly with an increase in radical distance and the maximum appeared near ends of bolt.With increasing radical distance,the value of radical stress changed from positive to negative roughly and then increased to zero,with maximum at the middle of bolt.The evolution of hoop stress as radical distance increasing was similar with stress along bolt axes.With an increase in depth,the radical effect ranges of all normal stress components were reduced.These suggest that the effect from tray on stress along bolt axes of bolted surrounding rock could be neglected,except near surface of surrounding rock.
基金Project supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No07JKD140095)
文摘In this paper, a rotational invariant of interaction energy between two biaxial-shaped molecules is assumed and in the mean field approximation, nine elastic constants for simple distortion patterns in biaxial nematics are derived in terms of the thermal average (Dmn^(l)) (Dm'n'^(l')), where Dmn^(l) is the Wigner rotation matrix. In the lowest order terms, the elastic constants depend on coefficients Γ,Γ', λ, order parameters Q0 = Q0(D00^(2)) +Q2(D02^(2)+D0-2^(2)) and Q2 = Q0(D20^(2)) + Q2(D22^(2)+D2-2^(2)). Here Γ and Γ' depend on the function form of molecular interaction energy vj′j″j (τ12) and probability function fk′k″k (τ12), where r12 is the distance between two molecules, and λ is proportional to temperature. Q0 and Q2 are parameters related to multiple moments of molecules. Comparing these results with those obtained from Landau-de Gennes theory, we have obtained relationships between coefficients, order parameters used in both theories. In the special case of uniaxial nematics, both results are reduced to a degenerate case where K11=K33.
基金Science and Technology Commission of Shanghai Municipality(21ZR1472900,22ZR1471600)。
文摘Platinum(Pt)-based noble metal catalysts(PGMs)are the most widely used commercial catalysts,but they have the problems of high cost,low reserves,and susceptibility to small-molecule toxicity.Transition metal oxides(TMOs)are regarded as potential substitutes for PGMs because of their stability in oxidizing environments and excellent catalytic performance.In this study,comprehensive investigation into the influence of elastic strains on the adsorption energies of carbon(C),hydrogen(H)and oxygen(O)on TMOs was conducted.Based on density functional theory(DFT)calculations,these effects in both tetragonal structures(PtO_(2),PdO_(2))and hexagonal structures(ZnO,CdO),along with their respective transition metals were systematically explored.It was identified that the optimal adsorption sites on metal oxides pinpointed the top of oxygen or the top of metal atom,while face-centered cubic(FCC)and hexagonal close-packed(HCP)holes were preferred for the transition metals.Furthermore,under the influence of elastic strains,the results demonstrated significant disparities in the adsorption energies of H and O between oxides and transition metals.Despite these differences,the effect of elastic strains on the adsorption energies of C,H and O on TMOs mirrored those on transition metals:adsorption energies increased under compressive strains,indicating weaker adsorption,and decreased under tension strains,indicating stronger adsorption.This behavior was rationalized based on the d-band model for adsorption atop a metallic atom or the p-band model for adsorption atop an oxygen atom.Consequently,elastic strains present a promising avenue for tailoring the catalytic properties of TMOs.
基金supported by the National Natural Science Foundation of China (Grant Nos.12164019,11991060,12088101,and U1930402)the Natural Science Foundation of Jiangxi Province of China (Grant No.20212BAB201017).
文摘Considerable efforts are being made to transition current lithium-ion and sodium-ion batteries towards the use of solid-state electrolytes.Computational methods,specifically nudged elastic band(NEB)and molecular dynamics(MD)methods,provide powerful tools for the design of solid-state electrolytes.The MD method is usually the choice for studying the materials involving complex multiple diffusion paths or having disordered structures.However,it relies on simulations at temperatures much higher than working temperature.This paper studies the reliability of the MD method using the system of Na diffusion in MgO as a benchmark.We carefully study the convergence behavior of the MD method and demonstrate that total effective simulation time of 12 ns can converge the calculated diffusion barrier to about 0.01 eV.The calculated diffusion barrier is 0.31 eV from both methods.The diffusion coefficients at room temperature are 4.3×10^(-9) cm^(2)⋅s^(−1) and 2.2×10^(-9) cm^(2)⋅s^(−1),respectively,from the NEB and MD methods.Our results justify the reliability of the MD method,even though high temperature simulations have to be employed to overcome the limitation on simulation time.
文摘Under high pressure, the long believed single-phase material CaB6 was latterly discovered to have a new phase tI56. Based on the density-functional theory, the pressure effects on the structural and elastic properties of CaB6 are obtained. The calculated bulk, shear, and Young’s moduli of the recently synthesized high pressure phase tI56-CaB6 are larger than those of the low pressure phase. Moreover, the high pressure phase of CaB6 has ductile behaviors, and its ductility increases with the increase of pressure. On the contrary, the calculated results indicate that the low pressure phase of CaB6 is brittle. The calculated Debye temperature indicates that the thermal conductivity of CaB6 is not very good. Furthermore, based on the Christoffel equation, the slowness surface of the acoustic waves is obtained.
文摘A theory of elasticity for the bending of orthogonal anisotropic beams was developed in this paper by analogy with the special case, which can be obtained by applying the theory of elasticity for bending of transversely isotropic plates to the problems of two dimensions. The authors also presented a method to solve the problems of bending of orthogonal anisotropic beams and a new theory of the deep-beam whose ratio of depth to length is larger. It is pointed out that Reissner's theory which takes into account the effect of transverse shear deformation is not suitable for the components of stress in our case.
基金National Natural Science Foundation of China(42174139,41974119,42030103)Laoshan Laboratory Science and Technology Innovation Program(LSKJ202203406)Science Foundation from Innovation and Technology Support Program for Young Scientists in Colleges of Shandong Province and Ministry of Science and Technology of China(2019RA2136).
文摘Monitoring the change in horizontal stress from the geophysical data is a tough challenge, and it has a crucial impact on broad practical scenarios which involve reservoir exploration and development, carbon dioxide (CO_(2)) injection and storage, shallow surface prospecting and deep-earth structure description. The change in in-situ stress induced by hydrocarbon production and localized tectonic movements causes the changes in rock mechanic properties (e.g. wave velocities, density and anisotropy) and further causes the changes in seismic amplitudes, phases and travel times. In this study, the nonlinear elasticity theory that regards the rock skeleton (solid phase) and pore fluid as an effective whole is used to characterize the effect of horizontal principal stress on rock overall elastic properties and the stress-dependent anisotropy parameters are therefore formulated. Then the approximate P-wave, SV-wave and SH-wave angle-dependent reflection coefficient equations for the horizontal-stress-induced anisotropic media are proposed. It is shown that, on the different reflectors, the stress-induced relative changes in reflectivities (i.e., relative difference) of elastic parameters (i.e., P- and S-wave velocities and density) are much less than the changes in contrasts of anisotropy parameters. Therefore, the effects of stress change on the reflectivities of three elastic parameters are reasonably neglected to further propose an AVO inversion approach incorporating P-, SH- and SV-wave information to estimate the change in horizontal principal stress from the corresponding time-lapse seismic data. Compared with the existing methods, our method eliminates the need for man-made rock-physical or fitting parameters, providing more stable predictive power. 1D test illustrates that the estimated result from time-lapse P-wave reflection data shows the most reasonable agreement with the real model, while the estimated result from SH-wave reflection data shows the largest bias. 2D test illustrates the feasibility of the proposed inversion method for estimating the change in horizontal stress from P-wave time-lapse seismic data.
基金supported by the Australian Research Council (DP130104358)Fundamental Research Funds for the Central Universities under Grant number 2013JBM009+1 种基金Program for New Century Excellent Talents in University under Grant number NCET-13-0656Beijing Higher Education Young Elite Teacher Project under Grant number YETP0562
文摘In this paper, the free vibration of magneto- electro-elastic (MEE) nanoplates is investigated based on the nonlocal theory and Kirchhoff plate theory. The MEE nanoplate is assumed as all edges simply supported rectan gular plate subjected to the biaxial force, external electric potential, external magnetic potential, and temperature rise. By using the Hamilton's principle, the governing equations and boundary conditions are derived and then solved analytically to obtain the natural frequencies of MEE nanoplates. A parametric study is presented to examine the effect of the nonlocal parameter, thermo-magneto-electro-mechanical loadings and aspect ratio on the vibration characteristics of MEE nanoplates. It is found that the natural frequency is quite sensitive to the mechanical loading, electric loading and magnetic loading, while it is insensitive to the thermal loading.
文摘As suggested by the title, this extensive book is concerned with crack and contact prob- lems in linear elasticity. However, in general, it is intended for a wide audience ranging from engineers to mathematical physicists. Indeed, numerous problems of both academic and tech- nological interest in electro-magnetics, acoustics, solid and fluid dynamics, etc. are actually related to each other and governed by the same mixed boundary value problems from a unified mathematical standpoint
基金This work was supported by the National H-Tech Program under contract No.863-7152101
文摘The multiple scattering theory has been a powerful tool in determining the effective properties of heterogeneous materials. In this paper , a simple relationship between the scattering theory and the micromechanics theory based on the Eshelby principle has been suggested. According to the relationship, a new and simple approximate solution to the exact multiple scattering theory has been given in terms of Eshelby' s S-tensor. The solution easily shows those known results for isotropic composites with spherical inclusions and for tracnsversely isotropic composites, and first gives non-setf-consistent (average t-matrix) and symmetric self-consistent (effective medium or coherent potential) approximate results for isotropic composites with spheroidal inclusions.