期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Seismic fluid identification using a nonlinear elastic impedance inversion method based on a fast Markov chain Monte Carlo method 被引量:2
1
作者 Guang-Zhi Zhang Xin-Peng Pan +2 位作者 Zhen-Zhen Li Chang-Lu Sun Xing-Yao Yin 《Petroleum Science》 SCIE CAS CSCD 2015年第3期406-416,共11页
Elastic impedance inversion with high efficiency and high stability has become one of the main directions of seismic pre-stack inversion. The nonlinear elastic impedance inversion method based on a fast Markov chain M... Elastic impedance inversion with high efficiency and high stability has become one of the main directions of seismic pre-stack inversion. The nonlinear elastic impedance inversion method based on a fast Markov chain Monte Carlo (MCMC) method is proposed in this paper, combining conventional MCMC method based on global optimization with a preconditioned conjugate gradient (PCG) algorithm based on local optimization, so this method does not depend strongly on the initial model. It converges to the global optimum quickly and efficiently on the condition that effi- ciency and stability of inversion are both taken into consid- eration at the same time. The test data verify the feasibility and robustness of the method, and based on this method, we extract the effective pore-fluid bulk modulus, which is applied to reservoir fluid identification and detection, and consequently, a better result has been achieved. 展开更多
关键词 elastic impedance Nonlinear inversion FastMarkov chain Monte Carlo method - Preconditionedconjugate gradient algorithm ~ Effective pore-fluid bulkmodulus
下载PDF
Estimation of fracture density and orientation from azimuthal elastic impedance difference through singular value decomposition 被引量:3
2
作者 Lin Li Guang-Zhi Zhang +2 位作者 Jun-Zhou Liu Lei Han Jia-Jia Zhang 《Petroleum Science》 SCIE CAS CSCD 2021年第6期1675-1688,共14页
Accurate estimation of fracture density and orientation is of great significance for seismic characterization of fractured reservoirs.Here,we propose a novel methodology to estimate fracture density and orientation fr... Accurate estimation of fracture density and orientation is of great significance for seismic characterization of fractured reservoirs.Here,we propose a novel methodology to estimate fracture density and orientation from azimuthal elastic impedance(AEI)difference using singular value decomposition(SVD).Based on Hudson's model,we first derive the AEI equation containing fracture density in HTI media,and then obtain basis functions and singular values from the normalized AEI difference utilizing SVD.Analysis shows that the basis function changing with azimuth is related to fracture orientation,fracture density is the linearly weighted sum of singular values,and the first singular value contributes the most to fracture density.Thus,we develop an SVD-based fracture density and orientation inversion approach constrained by smooth prior elastic parameters.Synthetic example shows that fracture density and orientation can be stably estimated,and the correlation coefficient between the true value and the estimated fracture density is above 0.85 even when an S/N ratio of 2.Field data example shows that the estimated fracture orientation is consistent with the interpretation of image log data,and the estimated fracture density reliably indicates fractured gas-bearing reservoir,which could help to guide the exploration and development of fractured reservoirs. 展开更多
关键词 Singular value decomposition HTI media Azimuthal elastic impedance inversion Fracture density Fracture orientation
下载PDF
The Direct Method of Lines for Forward and Inverse Linear Elasticity Problems of Composite Materials in Star-shaped Domains
3
作者 Xiaopeng Zhu Zhizhang Wu Zhongyi Huang 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE CSCD 2023年第1期242-276,共35页
In this paper,we generalize the direct method of lines for linear elasticity problems of composite materials in star-shaped domains and consider its application to inverse elasticity problems.We assume that the bounda... In this paper,we generalize the direct method of lines for linear elasticity problems of composite materials in star-shaped domains and consider its application to inverse elasticity problems.We assume that the boundary of the star-shaped domain can be described by an explicit C 1 parametric curve in the polar coordinate.We introduce the curvilinear coordinate,in which the irregular star-shaped domain is converted to a regular semi-infinite strip.The equations of linear elasticity are discretized with respect to the angular variable and we solve the resulting semidiscrete approximation analytically using a direct method.The eigenvalues of the semi-discrete approximation converge quickly to the true eigenvalues of the elliptic operator,which helps capture the singularities naturally.Moreover,an optimal error estimate of our method is given.For the inverse elasticity problems,we determine the Lam´e coefficients from measurement data by minimizing a regularized energy functional.We apply the direct method of lines as the forward solver in order to cope with the irregularity of the domain and possible singularities in the forward solutions.Several numerical examples are presented to show the effectiveness and accuracy of our method for both forward and inverse elasticity problems of composite materials. 展开更多
关键词 Composite materials linear elasticity problems inverse elasticity problems starshaped domains method of lines
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部