The steel reinforced plastic pipe is a kind of green environmental protection pipelines with double-sides corrosionresisting and better withstanding to medium working pressure. The structure and technical process of t...The steel reinforced plastic pipe is a kind of green environmental protection pipelines with double-sides corrosionresisting and better withstanding to medium working pressure. The structure and technical process of this pipe are described briefly in this paper, and the finite element analysis has been done for the sake of understanding the distributions of stress and displacement inside this pipe under hydrostatic pressure. The analysis results are very important for safety application of the steel reinforced plastic pipe.展开更多
In this work, the finite element analysis of the elasto-plastic plate bending problems is carried out using transition rectangular plate elements. The shape functions of the transition plate elements are derived based...In this work, the finite element analysis of the elasto-plastic plate bending problems is carried out using transition rectangular plate elements. The shape functions of the transition plate elements are derived based on a practical rule. The transition plate elements are all quadrilateral and can be used to obtain efficient finite element models using minimum number of elements. The mesh convergence rates of the models including the transition elements are compared with the regular element models. To verify the developed elements, simple tests are demonstrated and various elasto-plastic problems are solved. Their results are compared with ANSYS results.展开更多
This paper describes an incompatible finite element model satisfying the consistency condition of energy to solve the numerical precision problem of finite element solution in perfectly plastic analysis. In this paper...This paper describes an incompatible finite element model satisfying the consistency condition of energy to solve the numerical precision problem of finite element solution in perfectly plastic analysis. In this paper the reason and criterion of the application of the model to plastic limit analysis are discussed, and an algorithm of computing plastic limit load is given.展开更多
This paper deals with the numerical implementation of the exponential Drucker-Parger plasticitymodel in the commercial finite element software,ABAQUS,via user subroutine UMAT for adhesive joint simulations.The influen...This paper deals with the numerical implementation of the exponential Drucker-Parger plasticitymodel in the commercial finite element software,ABAQUS,via user subroutine UMAT for adhesive joint simulations.The influence of hydrostatic pressure on adhesive strength was investigated by a modified Arcan fixture designed particularly to induce a different state of hydrostatic pressure within an adhesive layer.The developed user subroutine UMAT,which utilizes an associated plastic flow during a plastic deformation,can provide a good agreement between the simulations and the experimental data.Better numerical stability at highly positive hydrostatic pressure loads for a very high order of exponential function can also be achieved compared to when a non-associated flow is used.展开更多
According to the lower-bound theorem of limit analysis the Rigid Finite Element Meth-od(RFEM)is applied to structural limit analysis and the linear programmings for limit analysis are deducedin this paper.Moreover,the...According to the lower-bound theorem of limit analysis the Rigid Finite Element Meth-od(RFEM)is applied to structural limit analysis and the linear programmings for limit analysis are deducedin this paper.Moreover,the Thermo-Parameter Method(TPM)and Parametric Variational principles(PVP)are used to reduce the computational effort while maintaining the accuracy of solutions.A better solution isalso obtained in this paper.展开更多
In recent years,finite element analysis is increasingly being proposed in slope stability problems as a competitive method to traditional limit equilibrium methods(LEMs)which are known for their inherent deficiencies....In recent years,finite element analysis is increasingly being proposed in slope stability problems as a competitive method to traditional limit equilibrium methods(LEMs)which are known for their inherent deficiencies.However,the application of finite element method(FEM)to slope stability as a strength reduction method(SRM)or as finite element limit analysis(FELA)is not always a success for the drawbacks that characterize both methods.To increase the performance of finite element analysis in this problem,a new approach is proposed in this paper.It consists in gradually expanding the mobilized stress Mohr’s circles until the soil failure occurs according to a prescribed non-convergence criterion.The present approach called stress deviator increasing method(SDIM)is considered rigorous for three main reasons.Firstly,it preserves the definition of the factor of safety(FOS)as the ratio of soil shear strength to the mobilized shear stress.Secondly,it maintains the progressive development of shear stress resulting from the increase in the principal stress deviator on the same plane,on which the shear strength takes place.Thirdly,by introducing the concept of equivalent stress loading,the resulting trial stresses are checked against the violation of the actual yield criterion formed with the real strength parameters rather than those reduced by a trial factor.The new numerical procedure was encoded in a Fortran computer code called S^(4)DINA and verified by several examples.Comparisons with other numerical methods such as the SRM,gravity increasing method(GIM)or even FELA by assessing both the FOS and contours of equivalent plastic strains showed promising results.展开更多
A two-dimensional axisymmetric finite element model is developed to analyze the transient thermal and mechanical behaviors of the Resistance Spot Welding (RSW) process using commercial software ANSYS. Firstly a dire...A two-dimensional axisymmetric finite element model is developed to analyze the transient thermal and mechanical behaviors of the Resistance Spot Welding (RSW) process using commercial software ANSYS. Firstly a direct-coupled electrical-thermal Finite Element Analysis (FEA) is performed to analyze the transient thermal characteristics of the RSW process. Then based on the thermal results a sequential coupled thermo-elastic-plastic analysis is conducted to determine the mechanical features of the RSW process. The thermal history of the whole process and the temperature distribution of the weldment are obtained through the analysis. The mechanical features, including the distributions of the contact pressure at both the faying surface and the electrode-workpiece interface, the stress and strain distributions in the weldment and their changes during the RSW process, the deformation of the weldment and the electrode displacement are also calculated.展开更多
The objective of the present paper is to develop nonlinear finite element method models for predicting the weld-induced initial deflection and residual stress of plating in steel stiffened-plate structures. For this p...The objective of the present paper is to develop nonlinear finite element method models for predicting the weld-induced initial deflection and residual stress of plating in steel stiffened-plate structures. For this purpose, three-dimensional thermo-elastic-plastic finite element method computations are performed with varying plate thickness and weld bead length (leg length) in welded plate panels, the latter being associated with weld heat input. The finite element models are verified by a comparison with experimental database which was obtained by the authors in separate studies with full scale measurements. It is concluded that the nonlinear finite element method models developed in the present paper are very accurate in terms of predicting the weld-induced initial imperfections of steel stiffened plate structures. Details of the numerical computations together with test database are documented.展开更多
Taking double-die ironing for example, the plastic deformation behavior of theworkpiece in multidie ironing process is analysed by the rigid-plastic finite element method(RPFEM).Considering the strain hardening of the...Taking double-die ironing for example, the plastic deformation behavior of theworkpiece in multidie ironing process is analysed by the rigid-plastic finite element method(RPFEM).Considering the strain hardening of the material, the distrbutions of the effective strainrate and hydrostatic stress are obtained. Calculated results and the effect of die argles on thedeformation and ironing force are discussed. The companrson of calculated results with thcoe of ex-poriment shows a good agreement.展开更多
In recent years, finite element analyses have increasingly been utilized for slope stability problems. In comparison to limit equilibrium methods, numerical analyses do not require any definition of the failure mechan...In recent years, finite element analyses have increasingly been utilized for slope stability problems. In comparison to limit equilibrium methods, numerical analyses do not require any definition of the failure mechanism a priori and enable the determination of the safety level more accurately. The paper compares the performances of strength reduction finite element analysis(SRFEA) with finite element limit analysis(FELA), whereby the focus is related to non-associated plasticity. Displacement-based finite element analyses using a strength reduction technique suffer from numerical instabilities when using non-associated plasticity, especially when dealing with high friction angles but moderate dilatancy angles. The FELA on the other hand provides rigorous upper and lower bounds of the factor of safety(FoS) but is restricted to associated flow rules. Suggestions to overcome this problem, proposed by Davis(1968), lead to conservative FoSs; therefore, an enhanced procedure has been investigated. When using the modified approach, both the SRFEA and the FELA provide very similar results. Further studies highlight the advantages of using an adaptive mesh refinement to determine FoSs. Additionally, it is shown that the initial stress field does not affect the FoS when using a Mohr-Coulomb failure criterion.展开更多
The elastic-plastic indentation properties of materials with varying ratio of hardness to Young’s modulus(H/E) were analyzed with the finite element method. And the indentation stress fields of materials with varying...The elastic-plastic indentation properties of materials with varying ratio of hardness to Young’s modulus(H/E) were analyzed with the finite element method. And the indentation stress fields of materials with varying ratio H/E on the surface were studied by the experiment. The results show that the penetration depth, contact radius, plastic pile-up and the degree of elastic recovery depend strongly on the ratio H/E. Moreover, graphs were established to describe the relationship between the elastic-plastic indentation parameters and H/E. The established graphs can be used to predict the H/E of materials when compared with experimental data.展开更多
The most critical issue in the steel catenary riser design is to evaluate the fatigue damage in the touchdown zone accurately. Appropriate modeling of the riser-soil resistance in the touchdown zone can lead to signif...The most critical issue in the steel catenary riser design is to evaluate the fatigue damage in the touchdown zone accurately. Appropriate modeling of the riser-soil resistance in the touchdown zone can lead to significant cost reduction by optimizing design. This paper presents a plasticity model that can be applied to numerically simulate riser-soil interaction and evaluate dynamic responses and the fatigue damage of a steel catenary riser in the touchdown zone. Utilizing the model, numerous riser-soil elements are attached to the steel catenary riser finite elements, in which each simulates local foundation restraint along the riser touchdown zone. The riser-soil interaction plasticity model accounts for the behavior within an allowable combined loading surface. The model will be represented in this paper, allowing simple numerical implementation. More importantly, it can be incorporated within the structural analysis of a steel catenary riser with the finite element method. The applicability of the model is interpreted theoretically and the results are shown through application to an offshore 8.625 steel catenary riser example. The fatigue analysis results of the liner elastic riser-soil model are also shown. According to the comparison results of the two models, the fatigue life analysis results of the plasticity framework are reasonable and the horizontal effects of the riser-soil interaction can be included.展开更多
The aim of this work is to analyze the stress distributions on a crown-luting cement-substrate system with a finite-element method in order to predict the likelihood of interfacial micro cracks, radial or circumferent...The aim of this work is to analyze the stress distributions on a crown-luting cement-substrate system with a finite-element method in order to predict the likelihood of interfacial micro cracks, radial or circumferential cracks, delamination, fracture and delamination with torsion. The contact and layer interface stresses in elastic layered half-space indented by an elastic sphere were examined using finite element method. The model consists of crown, luting cement and substrate. The solutions were carried out for three different elastic moduli of luting cement. It was placed between the cement and the substrate as a middle layer and its elastic module was chosen lower than the elastic module of crown and higher than the elastic module of dentin. An axisymmetric finite element mesh was set up for the stress analysis. Stress distributions on the contact surface and the interfaces of crown-luting cement and luting cement-dentin have been investigated for three different values of luting cement by using ANSYS. The effects of the luting cement which has three different elastic moduli on the pressure distribution and the location of interfacial stresses of the multi-layer model have been examined. The mechanism of crack initiation in the interfaces and interracial delamination was also studied quantitatively. For each luting cement, the pressure distribution is similar at the contact zone. Stress discontinuities occur at the perfect bonding interfaces of the crown-luting cement and the substrate-luting cement. The maximum stress jumps are obtained for the highest and the lowest elastic module of the luting cement. In the crown-luting cement-substrate system, failures may initiate at crown-luting cement region for luting cement with the lowest elastic module value. In addition, failures at luting cement-substrate region may occur for luting cement with the highest elastic module. In the luting cement, the medium elastic module value is more suitable for stress distribution in crown-luting cement-substrate interfaces.展开更多
The effect of various process variables on the law of metal flow for semi-solid rolling 60Si2Mn was studied by finite element method. Semi-solid 60Si2Mn can be described as compressible rigid visco-plastic porous mate...The effect of various process variables on the law of metal flow for semi-solid rolling 60Si2Mn was studied by finite element method. Semi-solid 60Si2Mn can be described as compressible rigid visco-plastic porous material saturated with liquid. In terms of ther-mo-mechanical coupling condition, the distributions of stress, velocity and temperature were studied using software MARC. The simulation results show that the rigid visco-plastic model can accurately describe the semi-solid 60Si2Mn rolling process. The great deformation can achieve completely in view of low flow stress of semi-solid slurry.展开更多
A coupled thermo-mechanical model containing metal flow and temperature field for calculating temperature variation has been developed on fourteen-pass hot continuous rolling of round rod for Inconel 718 alloy using 3...A coupled thermo-mechanical model containing metal flow and temperature field for calculating temperature variation has been developed on fourteen-pass hot continuous rolling of round rod for Inconel 718 alloy using 3D elastic-plastic finite element method (FEM). The temperature of characteristic analysis points in the intermediate cross-section of the workpiece has been simulated at initial temperature ranging from 960 to 1000 ℃ and initial velocity in range of 0.15-0.55 m·s^-1. Based on finite element analysis and microstructural observation in cylindrical hot compression experiments, the appropriate hot continuous rolling technologies have been designed for rod products with different diameters. For a real rolling practice, the simulated surface temperature was examined and is in good agreement with the measured one.展开更多
Traditional fracture analysis is based on fracture mechanics and damage mechanics. They focus on the propagation of the fracture. However, their propagation criterions are not easily applied in practice and the curren...Traditional fracture analysis is based on fracture mechanics and damage mechanics. They focus on the propagation of the fracture. However, their propagation criterions are not easily applied in practice and the current analysis is limited in planar problem. This paper presents a new theory that the occurrence of the unbalanced force (derived from the Deformation Reinforcement Theory) could be the criterion of the initiation of the fracture, and the distribution area and propagation of the unbalanced force could be the indication of the fracture propagation direction. By aggregate analysis with Stress Intensity Factor (SIF) criterion, the unbalanced force actually is the opposite external load that is the SIF difference incurred between the external loads and permitted by the structure. Numerical simulation and physical experiments on pre-fracture cuboid rock specimens proved that the occurrence of the unbalanced force could be the initiation of the fracture. Mesh size dependence was also considered by analysis of different mesh size finite element gravity dam models. Furthermore, the theory was applied to the feasibility analysis of the Baihetan arch dam together with physical experiments in order to evaluate the fracture propagation of dam heel. The results show that it is an effective way to use unbalanced force to analyze the fracture initiation and propagation when performing 3-dimensional nonlinear FEM calculation.展开更多
文摘The steel reinforced plastic pipe is a kind of green environmental protection pipelines with double-sides corrosionresisting and better withstanding to medium working pressure. The structure and technical process of this pipe are described briefly in this paper, and the finite element analysis has been done for the sake of understanding the distributions of stress and displacement inside this pipe under hydrostatic pressure. The analysis results are very important for safety application of the steel reinforced plastic pipe.
文摘In this work, the finite element analysis of the elasto-plastic plate bending problems is carried out using transition rectangular plate elements. The shape functions of the transition plate elements are derived based on a practical rule. The transition plate elements are all quadrilateral and can be used to obtain efficient finite element models using minimum number of elements. The mesh convergence rates of the models including the transition elements are compared with the regular element models. To verify the developed elements, simple tests are demonstrated and various elasto-plastic problems are solved. Their results are compared with ANSYS results.
文摘This paper describes an incompatible finite element model satisfying the consistency condition of energy to solve the numerical precision problem of finite element solution in perfectly plastic analysis. In this paper the reason and criterion of the application of the model to plastic limit analysis are discussed, and an algorithm of computing plastic limit load is given.
基金funded by King Mongkut’s University of Technology North Bangkok.Contract No.KMUTNB-PHD-62-07.
文摘This paper deals with the numerical implementation of the exponential Drucker-Parger plasticitymodel in the commercial finite element software,ABAQUS,via user subroutine UMAT for adhesive joint simulations.The influence of hydrostatic pressure on adhesive strength was investigated by a modified Arcan fixture designed particularly to induce a different state of hydrostatic pressure within an adhesive layer.The developed user subroutine UMAT,which utilizes an associated plastic flow during a plastic deformation,can provide a good agreement between the simulations and the experimental data.Better numerical stability at highly positive hydrostatic pressure loads for a very high order of exponential function can also be achieved compared to when a non-associated flow is used.
基金The project supported by National Natural Science Foundation of China
文摘According to the lower-bound theorem of limit analysis the Rigid Finite Element Meth-od(RFEM)is applied to structural limit analysis and the linear programmings for limit analysis are deducedin this paper.Moreover,the Thermo-Parameter Method(TPM)and Parametric Variational principles(PVP)are used to reduce the computational effort while maintaining the accuracy of solutions.A better solution isalso obtained in this paper.
文摘In recent years,finite element analysis is increasingly being proposed in slope stability problems as a competitive method to traditional limit equilibrium methods(LEMs)which are known for their inherent deficiencies.However,the application of finite element method(FEM)to slope stability as a strength reduction method(SRM)or as finite element limit analysis(FELA)is not always a success for the drawbacks that characterize both methods.To increase the performance of finite element analysis in this problem,a new approach is proposed in this paper.It consists in gradually expanding the mobilized stress Mohr’s circles until the soil failure occurs according to a prescribed non-convergence criterion.The present approach called stress deviator increasing method(SDIM)is considered rigorous for three main reasons.Firstly,it preserves the definition of the factor of safety(FOS)as the ratio of soil shear strength to the mobilized shear stress.Secondly,it maintains the progressive development of shear stress resulting from the increase in the principal stress deviator on the same plane,on which the shear strength takes place.Thirdly,by introducing the concept of equivalent stress loading,the resulting trial stresses are checked against the violation of the actual yield criterion formed with the real strength parameters rather than those reduced by a trial factor.The new numerical procedure was encoded in a Fortran computer code called S^(4)DINA and verified by several examples.Comparisons with other numerical methods such as the SRM,gravity increasing method(GIM)or even FELA by assessing both the FOS and contours of equivalent plastic strains showed promising results.
文摘A two-dimensional axisymmetric finite element model is developed to analyze the transient thermal and mechanical behaviors of the Resistance Spot Welding (RSW) process using commercial software ANSYS. Firstly a direct-coupled electrical-thermal Finite Element Analysis (FEA) is performed to analyze the transient thermal characteristics of the RSW process. Then based on the thermal results a sequential coupled thermo-elastic-plastic analysis is conducted to determine the mechanical features of the RSW process. The thermal history of the whole process and the temperature distribution of the weldment are obtained through the analysis. The mechanical features, including the distributions of the contact pressure at both the faying surface and the electrode-workpiece interface, the stress and strain distributions in the weldment and their changes during the RSW process, the deformation of the weldment and the electrode displacement are also calculated.
文摘The objective of the present paper is to develop nonlinear finite element method models for predicting the weld-induced initial deflection and residual stress of plating in steel stiffened-plate structures. For this purpose, three-dimensional thermo-elastic-plastic finite element method computations are performed with varying plate thickness and weld bead length (leg length) in welded plate panels, the latter being associated with weld heat input. The finite element models are verified by a comparison with experimental database which was obtained by the authors in separate studies with full scale measurements. It is concluded that the nonlinear finite element method models developed in the present paper are very accurate in terms of predicting the weld-induced initial imperfections of steel stiffened plate structures. Details of the numerical computations together with test database are documented.
文摘Taking double-die ironing for example, the plastic deformation behavior of theworkpiece in multidie ironing process is analysed by the rigid-plastic finite element method(RPFEM).Considering the strain hardening of the material, the distrbutions of the effective strainrate and hydrostatic stress are obtained. Calculated results and the effect of die argles on thedeformation and ironing force are discussed. The companrson of calculated results with thcoe of ex-poriment shows a good agreement.
文摘In recent years, finite element analyses have increasingly been utilized for slope stability problems. In comparison to limit equilibrium methods, numerical analyses do not require any definition of the failure mechanism a priori and enable the determination of the safety level more accurately. The paper compares the performances of strength reduction finite element analysis(SRFEA) with finite element limit analysis(FELA), whereby the focus is related to non-associated plasticity. Displacement-based finite element analyses using a strength reduction technique suffer from numerical instabilities when using non-associated plasticity, especially when dealing with high friction angles but moderate dilatancy angles. The FELA on the other hand provides rigorous upper and lower bounds of the factor of safety(FoS) but is restricted to associated flow rules. Suggestions to overcome this problem, proposed by Davis(1968), lead to conservative FoSs; therefore, an enhanced procedure has been investigated. When using the modified approach, both the SRFEA and the FELA provide very similar results. Further studies highlight the advantages of using an adaptive mesh refinement to determine FoSs. Additionally, it is shown that the initial stress field does not affect the FoS when using a Mohr-Coulomb failure criterion.
基金Science Research Foundation of Shanghai Municipal Education Commission (No.06VZ004)
文摘The elastic-plastic indentation properties of materials with varying ratio of hardness to Young’s modulus(H/E) were analyzed with the finite element method. And the indentation stress fields of materials with varying ratio H/E on the surface were studied by the experiment. The results show that the penetration depth, contact radius, plastic pile-up and the degree of elastic recovery depend strongly on the ratio H/E. Moreover, graphs were established to describe the relationship between the elastic-plastic indentation parameters and H/E. The established graphs can be used to predict the H/E of materials when compared with experimental data.
文摘The most critical issue in the steel catenary riser design is to evaluate the fatigue damage in the touchdown zone accurately. Appropriate modeling of the riser-soil resistance in the touchdown zone can lead to significant cost reduction by optimizing design. This paper presents a plasticity model that can be applied to numerically simulate riser-soil interaction and evaluate dynamic responses and the fatigue damage of a steel catenary riser in the touchdown zone. Utilizing the model, numerous riser-soil elements are attached to the steel catenary riser finite elements, in which each simulates local foundation restraint along the riser touchdown zone. The riser-soil interaction plasticity model accounts for the behavior within an allowable combined loading surface. The model will be represented in this paper, allowing simple numerical implementation. More importantly, it can be incorporated within the structural analysis of a steel catenary riser with the finite element method. The applicability of the model is interpreted theoretically and the results are shown through application to an offshore 8.625 steel catenary riser example. The fatigue analysis results of the liner elastic riser-soil model are also shown. According to the comparison results of the two models, the fatigue life analysis results of the plasticity framework are reasonable and the horizontal effects of the riser-soil interaction can be included.
文摘The aim of this work is to analyze the stress distributions on a crown-luting cement-substrate system with a finite-element method in order to predict the likelihood of interfacial micro cracks, radial or circumferential cracks, delamination, fracture and delamination with torsion. The contact and layer interface stresses in elastic layered half-space indented by an elastic sphere were examined using finite element method. The model consists of crown, luting cement and substrate. The solutions were carried out for three different elastic moduli of luting cement. It was placed between the cement and the substrate as a middle layer and its elastic module was chosen lower than the elastic module of crown and higher than the elastic module of dentin. An axisymmetric finite element mesh was set up for the stress analysis. Stress distributions on the contact surface and the interfaces of crown-luting cement and luting cement-dentin have been investigated for three different values of luting cement by using ANSYS. The effects of the luting cement which has three different elastic moduli on the pressure distribution and the location of interfacial stresses of the multi-layer model have been examined. The mechanism of crack initiation in the interfaces and interracial delamination was also studied quantitatively. For each luting cement, the pressure distribution is similar at the contact zone. Stress discontinuities occur at the perfect bonding interfaces of the crown-luting cement and the substrate-luting cement. The maximum stress jumps are obtained for the highest and the lowest elastic module of the luting cement. In the crown-luting cement-substrate system, failures may initiate at crown-luting cement region for luting cement with the lowest elastic module value. In addition, failures at luting cement-substrate region may occur for luting cement with the highest elastic module. In the luting cement, the medium elastic module value is more suitable for stress distribution in crown-luting cement-substrate interfaces.
基金the National Natural Science Foundation of China (No.59995440).
文摘The effect of various process variables on the law of metal flow for semi-solid rolling 60Si2Mn was studied by finite element method. Semi-solid 60Si2Mn can be described as compressible rigid visco-plastic porous material saturated with liquid. In terms of ther-mo-mechanical coupling condition, the distributions of stress, velocity and temperature were studied using software MARC. The simulation results show that the rigid visco-plastic model can accurately describe the semi-solid 60Si2Mn rolling process. The great deformation can achieve completely in view of low flow stress of semi-solid slurry.
基金the financial supports from the National Natural Science Foundation of China (Key Program,Grant No.50634030)the Program for New Century Excellent Talents in University (Grant No.NCET-06-0285)
文摘A coupled thermo-mechanical model containing metal flow and temperature field for calculating temperature variation has been developed on fourteen-pass hot continuous rolling of round rod for Inconel 718 alloy using 3D elastic-plastic finite element method (FEM). The temperature of characteristic analysis points in the intermediate cross-section of the workpiece has been simulated at initial temperature ranging from 960 to 1000 ℃ and initial velocity in range of 0.15-0.55 m·s^-1. Based on finite element analysis and microstructural observation in cylindrical hot compression experiments, the appropriate hot continuous rolling technologies have been designed for rod products with different diameters. For a real rolling practice, the simulated surface temperature was examined and is in good agreement with the measured one.
基金supported by the National Natural Science Foundation of China (Grant No. 50709014)China National Funds for Distinguished Young Scientists (Grant No. 50925931)State Key Laboratory of Hydroscience and Engineering of China (Grant No. 2008-TC-2)
文摘Traditional fracture analysis is based on fracture mechanics and damage mechanics. They focus on the propagation of the fracture. However, their propagation criterions are not easily applied in practice and the current analysis is limited in planar problem. This paper presents a new theory that the occurrence of the unbalanced force (derived from the Deformation Reinforcement Theory) could be the criterion of the initiation of the fracture, and the distribution area and propagation of the unbalanced force could be the indication of the fracture propagation direction. By aggregate analysis with Stress Intensity Factor (SIF) criterion, the unbalanced force actually is the opposite external load that is the SIF difference incurred between the external loads and permitted by the structure. Numerical simulation and physical experiments on pre-fracture cuboid rock specimens proved that the occurrence of the unbalanced force could be the initiation of the fracture. Mesh size dependence was also considered by analysis of different mesh size finite element gravity dam models. Furthermore, the theory was applied to the feasibility analysis of the Baihetan arch dam together with physical experiments in order to evaluate the fracture propagation of dam heel. The results show that it is an effective way to use unbalanced force to analyze the fracture initiation and propagation when performing 3-dimensional nonlinear FEM calculation.