A novel variable stiffness model was proposed for analyzing elastic-plastic bending problems with arbitrary variable stiffness in detail.First,it was assumed that the material of a rectangular beam is an ideal isotrop...A novel variable stiffness model was proposed for analyzing elastic-plastic bending problems with arbitrary variable stiffness in detail.First,it was assumed that the material of a rectangular beam is an ideal isotropic elastic-plastic material,whose elastic modulus,yield strength,and section height are functions of the axial coordinates of the beam respectively.Considering the effect of shear on the deformation of the beam,the elastic and elastic-plastic bending problems of the axially variable stiffness beam were studied.Then,the analytical solutions of the elastic and elastic-plastic deformation of the beam were derived when the cross-section height and the elastic modulus of the material were varied by special function along the length of the beam respectively.The elastic and elastic-plastic analysis of the variable stiffness beam was carried out using Differential Quadrature Method(DQM)when the bending stiffness varied arbitrarily.The influence of the axial variation of the bending stiffness on the elastic and elastic-plastic deformation of the beam was analyzed by numerical simulation,DQM,and finite element method(FEM).Simulation results verified the practicability of the proposed mechanical model,and the comparison between the results of the solutions of DQM and FEM showed that DQM is accurate and effective in elastic and elastic-plastic analysis of variable stiffness beams.展开更多
The theoretical analysis of springback in rotary stretch bending process of L-section extrusion was studied. The models for characterizing the springback angle after unloading were established based on the stress and ...The theoretical analysis of springback in rotary stretch bending process of L-section extrusion was studied. The models for characterizing the springback angle after unloading were established based on the stress and strain distributions in the cross-section of the part. With the proposed model, analysis of the effect of pre-stretch force and post-stretch force on springback angle shows that springback decreases as the pre-stretch force or post-stretch force increases. Comparative study with experiments clearly demonstrates that the prediction of springback can resort to the current model without the loss of accuracy.展开更多
Bending and tension deformations were performed on Mg-1.3 wt%Zn-0.2 wt%RE-0.3 wt%Zr(ZEK100)alloy sheets that initially had a transverse direction(TD)-split texture.The effects of bending and tension deformations on th...Bending and tension deformations were performed on Mg-1.3 wt%Zn-0.2 wt%RE-0.3 wt%Zr(ZEK100)alloy sheets that initially had a transverse direction(TD)-split texture.The effects of bending and tension deformations on the texture formation and room-temperature formability of specimens were investigated.The specimen subjected to 3-pass bending and tension deformations exhibited an excellent Erichsen value of 9.6 mm.However,the Erichsen value deterioration was observed in the specimen subjected to 7-pass deformations.The rolling direction-split texture developed on the surface with an increasing pass number of deformations.Conversely,the clear TD-split texture remained at the central part.As a result,a quadrupole texture was macroscopically developed with an increasing pass number of deformations.The reduction in anisotropy by the formation of the quadrupole texture is suggested to be the main reason for the improvement in stretch formability.By contrast,the generation of coarse grains near the surface is suggested to be the direct cause for the deterioration of the stretch formability of the specimen subjected to 7-pass deformations.展开更多
In order to enhance the dimension precision of bent part, advanced bending technologies is requested recently. Rotary stretch bending(RSB) is a suitable technology to realize high precision of bent part. The effect of...In order to enhance the dimension precision of bent part, advanced bending technologies is requested recently. Rotary stretch bending(RSB) is a suitable technology to realize high precision of bent part. The effect of processing parameters, namely the side pressure and the stretching force, on the dimension precision of aluminium profile RSB part was studied by finite element method. The numerical simulation of the U-shaped aluminium profile RSB was carried out, and the validity of the simulation was checked. Parametric analysis shows that the section distortion of the U-shaped profile LY12M bent part decreases with the increasing of the side pressure, whereas the springback of curvature increases, and that both of the section distortion and the springback of curvature decrease with the increasing of the stretching force, moreover, the uniformity of curvature of the bent part is clearly enhanced with the increasing of the stretching force. The results above prove that RSB technology can better improve the dimension precision of aluminium profile bent part.展开更多
For a given set of data points in the plane, a new method is presented for computing a parameter value(knot) for each data point. Associated with each data point, a quadratic polynomial curve passing through three a...For a given set of data points in the plane, a new method is presented for computing a parameter value(knot) for each data point. Associated with each data point, a quadratic polynomial curve passing through three adjacent consecutive data points is constructed. The curve has one degree of freedom which can be used to optimize the shape of the curve. To obtain a better shape of the curve, the degree of freedom is determined by optimizing the bending and stretching energies of the curve so that variation of the curve is as small as possible. Between each pair of adjacent data points, two local knot intervals are constructed, and the final knot interval corresponding to these two points is determined by a combination of the two local knot intervals. Experiments show that the curves constructed using the knots by the new method generally have better interpolation precision than the ones constructed using the knots by the existing local methods.展开更多
The analysis of plane strain elastic-plastic bending of a linear strain hardening curved beam with a narrow rectangular cross section subjected to couples at its end is conducted based on a unified yield criterion. Th...The analysis of plane strain elastic-plastic bending of a linear strain hardening curved beam with a narrow rectangular cross section subjected to couples at its end is conducted based on a unified yield criterion. The solutions for the mechanical properties of plane strain bending are derived, which are adapted for various kinds of non-strength differential materials and can be degenerated to those based on the Tresca, von Mises, and twin-shear yield criteria. The dependences of the two critical bending moments, the radii of the interfaces between the elastic and plastic regions and the radial displacements of the points at the symmetrical plane on different yield criteria and Poisson’s ratios are discussed. The results show that the influences of different yield criteria and Poisson’s ratio on the two critical bending moments, the radii of the interfaces between the elastic and plastic regions and the radial displacements of the points at the symmetrical plane of the curved beam are significant. Once the value of bis obtained by experiments, the yield criterion and the corresponding solution for the materials of interest are then determined.展开更多
Short-leg shear wall structures are a new form of building structure that combine the merits of both frame and shear wall structures. Its architectural features, structure bearing and engineering cost are reasonable. ...Short-leg shear wall structures are a new form of building structure that combine the merits of both frame and shear wall structures. Its architectural features, structure bearing and engineering cost are reasonable. To analyze the elastic-plastic response of a short-leg shear wall structure during an earthquake, this study modified the multiple-vertical-rod element model of the shear wall, considered the shear lag effect and proposed a multiple-vertical-rod element coupling beam model with a new local stiffness domain. Based on the principle of minimum potential energy and the variational principle, the stiffness matrixes of a short-leg shear wall and a coupling beam are derived in this study. Furthermore, the bending shear correlation for the analysis of different parameters to describe the structure, such as the beam height to span ratio, short-leg shear wall height to thickness ratio, and steel ratio are introduced. The results show that the height to span ratio directly affects the structural integrity; and the short-leg shear wall height to thickness ratio should be limited to a range of approximately 6.0 to 7.0. The design of short-leg shear walls should be in accordance with the "strong wall and weak beam" principle.展开更多
Describing stretch-bend process quantitatively is a need of the operator of tension leveller.Based on the research results of stretch-bend deformation mechanism,the mechanical behavior of stretch-bend process is analy...Describing stretch-bend process quantitatively is a need of the operator of tension leveller.Based on the research results of stretch-bend deformation mechanism,the mechanical behavior of stretch-bend process is analysed.展开更多
Based on the minimum principle of acceleration in the elastic-plastic continua under finite def ormation, the dynamic response of an elastic-perfectly plastic pin-ended beam subjected to rectangular impulse loading is...Based on the minimum principle of acceleration in the elastic-plastic continua under finite def ormation, the dynamic response of an elastic-perfectly plastic pin-ended beam subjected to rectangular impulse loading is studied with the help of a numerical approach. The calculated results once again show the anomalous behavior of the beam during its response process, which was previously found in [1]. By carefully analyzing the instantaneous distribution of the bending moment, the membrane force, the curvature and displacement during the response process, it is concluded that the interactive effect between the geometry and materials nonlinearities of the structure is the key reason for leading to the anomalous behavior. This will be helpful for clarifying some misunderstandings in explaining the problem before.展开更多
Stretchable electronics,which can function under mechanical deformations such as stretching,bending,or twisting,are comprised of various functional modules.However,the connections between these modules are often fragi...Stretchable electronics,which can function under mechanical deformations such as stretching,bending,or twisting,are comprised of various functional modules.However,the connections between these modules are often fragile,limiting the device’s overall robustness.展开更多
Ⅰ. INTRODUCTIONThin circular plates, a kind of the basic structural element widely used in engineering,are of the simplest plane-stress mechanical model with double curvatures. Hence, the investigation on the fundame...Ⅰ. INTRODUCTIONThin circular plates, a kind of the basic structural element widely used in engineering,are of the simplest plane-stress mechanical model with double curvatures. Hence, the investigation on the fundamental mechanical properties of the thin circular plates has been attracting great attention and brought about many results. Due to the difficulties展开更多
This paper studies electromagnetoelastic static investigation of a sandwich doubly curved microshell subjected to multi-field loading based on a new thickness stretching included refined higher order shear/normal defo...This paper studies electromagnetoelastic static investigation of a sandwich doubly curved microshell subjected to multi-field loading based on a new thickness stretching included refined higher order shear/normal deformable model.Modified-couple-stress-theory(MCST)is used for accounting small-scaledependency.The numerical results are derived using an analytical method.The effect of small scale parameter in micro scale,initial electric and magnetic potentials and foundation parameters is studied on the electromagnetoelastic bending results.It is confirmed an enhancing in stiffness of small scale shell with an increase in micro length scale parameter.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No.51175058).
文摘A novel variable stiffness model was proposed for analyzing elastic-plastic bending problems with arbitrary variable stiffness in detail.First,it was assumed that the material of a rectangular beam is an ideal isotropic elastic-plastic material,whose elastic modulus,yield strength,and section height are functions of the axial coordinates of the beam respectively.Considering the effect of shear on the deformation of the beam,the elastic and elastic-plastic bending problems of the axially variable stiffness beam were studied.Then,the analytical solutions of the elastic and elastic-plastic deformation of the beam were derived when the cross-section height and the elastic modulus of the material were varied by special function along the length of the beam respectively.The elastic and elastic-plastic analysis of the variable stiffness beam was carried out using Differential Quadrature Method(DQM)when the bending stiffness varied arbitrarily.The influence of the axial variation of the bending stiffness on the elastic and elastic-plastic deformation of the beam was analyzed by numerical simulation,DQM,and finite element method(FEM).Simulation results verified the practicability of the proposed mechanical model,and the comparison between the results of the solutions of DQM and FEM showed that DQM is accurate and effective in elastic and elastic-plastic analysis of variable stiffness beams.
基金Project (20090450276) supported by the China Postdoctoral Science FoundationProject (50905008) supported by the National Natural Science Foundation of China
文摘The theoretical analysis of springback in rotary stretch bending process of L-section extrusion was studied. The models for characterizing the springback angle after unloading were established based on the stress and strain distributions in the cross-section of the part. With the proposed model, analysis of the effect of pre-stretch force and post-stretch force on springback angle shows that springback decreases as the pre-stretch force or post-stretch force increases. Comparative study with experiments clearly demonstrates that the prediction of springback can resort to the current model without the loss of accuracy.
文摘Bending and tension deformations were performed on Mg-1.3 wt%Zn-0.2 wt%RE-0.3 wt%Zr(ZEK100)alloy sheets that initially had a transverse direction(TD)-split texture.The effects of bending and tension deformations on the texture formation and room-temperature formability of specimens were investigated.The specimen subjected to 3-pass bending and tension deformations exhibited an excellent Erichsen value of 9.6 mm.However,the Erichsen value deterioration was observed in the specimen subjected to 7-pass deformations.The rolling direction-split texture developed on the surface with an increasing pass number of deformations.Conversely,the clear TD-split texture remained at the central part.As a result,a quadrupole texture was macroscopically developed with an increasing pass number of deformations.The reduction in anisotropy by the formation of the quadrupole texture is suggested to be the main reason for the improvement in stretch formability.By contrast,the generation of coarse grains near the surface is suggested to be the direct cause for the deterioration of the stretch formability of the specimen subjected to 7-pass deformations.
基金Project(2005CB724100) supported by the National Basic Research Program of ChinaProject(50605043) supported by the National Natural Science Foundation of China
文摘In order to enhance the dimension precision of bent part, advanced bending technologies is requested recently. Rotary stretch bending(RSB) is a suitable technology to realize high precision of bent part. The effect of processing parameters, namely the side pressure and the stretching force, on the dimension precision of aluminium profile RSB part was studied by finite element method. The numerical simulation of the U-shaped aluminium profile RSB was carried out, and the validity of the simulation was checked. Parametric analysis shows that the section distortion of the U-shaped profile LY12M bent part decreases with the increasing of the side pressure, whereas the springback of curvature increases, and that both of the section distortion and the springback of curvature decrease with the increasing of the stretching force, moreover, the uniformity of curvature of the bent part is clearly enhanced with the increasing of the stretching force. The results above prove that RSB technology can better improve the dimension precision of aluminium profile bent part.
基金Supported by the National Natural Science Foundation of China(61602277,61672327,61472227)the Shandong Provincial Natural Science Foundation,China(ZR2016FQ12)
文摘For a given set of data points in the plane, a new method is presented for computing a parameter value(knot) for each data point. Associated with each data point, a quadratic polynomial curve passing through three adjacent consecutive data points is constructed. The curve has one degree of freedom which can be used to optimize the shape of the curve. To obtain a better shape of the curve, the degree of freedom is determined by optimizing the bending and stretching energies of the curve so that variation of the curve is as small as possible. Between each pair of adjacent data points, two local knot intervals are constructed, and the final knot interval corresponding to these two points is determined by a combination of the two local knot intervals. Experiments show that the curves constructed using the knots by the new method generally have better interpolation precision than the ones constructed using the knots by the existing local methods.
基金The Project of the Ministry of Housing and Urban-Rural Development(No.2014-K4-010)
文摘The analysis of plane strain elastic-plastic bending of a linear strain hardening curved beam with a narrow rectangular cross section subjected to couples at its end is conducted based on a unified yield criterion. The solutions for the mechanical properties of plane strain bending are derived, which are adapted for various kinds of non-strength differential materials and can be degenerated to those based on the Tresca, von Mises, and twin-shear yield criteria. The dependences of the two critical bending moments, the radii of the interfaces between the elastic and plastic regions and the radial displacements of the points at the symmetrical plane on different yield criteria and Poisson’s ratios are discussed. The results show that the influences of different yield criteria and Poisson’s ratio on the two critical bending moments, the radii of the interfaces between the elastic and plastic regions and the radial displacements of the points at the symmetrical plane of the curved beam are significant. Once the value of bis obtained by experiments, the yield criterion and the corresponding solution for the materials of interest are then determined.
文摘Short-leg shear wall structures are a new form of building structure that combine the merits of both frame and shear wall structures. Its architectural features, structure bearing and engineering cost are reasonable. To analyze the elastic-plastic response of a short-leg shear wall structure during an earthquake, this study modified the multiple-vertical-rod element model of the shear wall, considered the shear lag effect and proposed a multiple-vertical-rod element coupling beam model with a new local stiffness domain. Based on the principle of minimum potential energy and the variational principle, the stiffness matrixes of a short-leg shear wall and a coupling beam are derived in this study. Furthermore, the bending shear correlation for the analysis of different parameters to describe the structure, such as the beam height to span ratio, short-leg shear wall height to thickness ratio, and steel ratio are introduced. The results show that the height to span ratio directly affects the structural integrity; and the short-leg shear wall height to thickness ratio should be limited to a range of approximately 6.0 to 7.0. The design of short-leg shear walls should be in accordance with the "strong wall and weak beam" principle.
文摘Describing stretch-bend process quantitatively is a need of the operator of tension leveller.Based on the research results of stretch-bend deformation mechanism,the mechanical behavior of stretch-bend process is analysed.
基金the National Natural Science Foundation of China.
文摘Based on the minimum principle of acceleration in the elastic-plastic continua under finite def ormation, the dynamic response of an elastic-perfectly plastic pin-ended beam subjected to rectangular impulse loading is studied with the help of a numerical approach. The calculated results once again show the anomalous behavior of the beam during its response process, which was previously found in [1]. By carefully analyzing the instantaneous distribution of the bending moment, the membrane force, the curvature and displacement during the response process, it is concluded that the interactive effect between the geometry and materials nonlinearities of the structure is the key reason for leading to the anomalous behavior. This will be helpful for clarifying some misunderstandings in explaining the problem before.
文摘Stretchable electronics,which can function under mechanical deformations such as stretching,bending,or twisting,are comprised of various functional modules.However,the connections between these modules are often fragile,limiting the device’s overall robustness.
基金Project supported by the National Natural Science Foundation of China.
文摘Ⅰ. INTRODUCTIONThin circular plates, a kind of the basic structural element widely used in engineering,are of the simplest plane-stress mechanical model with double curvatures. Hence, the investigation on the fundamental mechanical properties of the thin circular plates has been attracting great attention and brought about many results. Due to the difficulties
基金the Programs for Science and Technology Development of Henan province(No.202102210020)Basic research plan of key scientific research projects of Henan universities(No.20B430011).
文摘This paper studies electromagnetoelastic static investigation of a sandwich doubly curved microshell subjected to multi-field loading based on a new thickness stretching included refined higher order shear/normal deformable model.Modified-couple-stress-theory(MCST)is used for accounting small-scaledependency.The numerical results are derived using an analytical method.The effect of small scale parameter in micro scale,initial electric and magnetic potentials and foundation parameters is studied on the electromagnetoelastic bending results.It is confirmed an enhancing in stiffness of small scale shell with an increase in micro length scale parameter.