Much effort has been made in investigating the seismic response and failure mechanism of rectangular subway stations,however,the influence of earth retaining systems has generally been ignored in previous studies.This...Much effort has been made in investigating the seismic response and failure mechanism of rectangular subway stations,however,the influence of earth retaining systems has generally been ignored in previous studies.This paper presents a numerical study on the seismic performance of a rectangular subway station with/without earth retaining systems by taking fender piles as the example,and aims to illustrate how the existence of fender piles affects seismic responses on subway stations.The loading conditions of subway stations and their surrounding soils prior to earthquakes are discussed.Next,seismic responses of subway stations with or without fender piles were simulated.Afterward,earthquake-induced deformations of stations and surrounding soils,as well as the internal forces and damage modes of the structural components,were systematically studied.Consequently,the seismic performance of the stations was affected by the existence of fender piles.In addition,earthquake intensity is illustrated.The study showed that deformation modes of surrounding soils and damage modes of stations were different with regard to the existence of fender piles.Meanwhile,earthquake intensity influencing the seismic performance of stations with or without fender piles were found to be opposite.展开更多
基金National Natural Science Foundation of Beijing under Grant No.8212007the National Natural Science Foundation of China under Grant Nos.51808028,52025084 and 51778026+1 种基金the Pyramid Talent Training Project of Beijing University of Civil Engineering and Architecture under Grant No.JDYC20200311the Fundamental Research Funds for Beijing University of Civil Engineering and Architecture(X18147)。
文摘Much effort has been made in investigating the seismic response and failure mechanism of rectangular subway stations,however,the influence of earth retaining systems has generally been ignored in previous studies.This paper presents a numerical study on the seismic performance of a rectangular subway station with/without earth retaining systems by taking fender piles as the example,and aims to illustrate how the existence of fender piles affects seismic responses on subway stations.The loading conditions of subway stations and their surrounding soils prior to earthquakes are discussed.Next,seismic responses of subway stations with or without fender piles were simulated.Afterward,earthquake-induced deformations of stations and surrounding soils,as well as the internal forces and damage modes of the structural components,were systematically studied.Consequently,the seismic performance of the stations was affected by the existence of fender piles.In addition,earthquake intensity is illustrated.The study showed that deformation modes of surrounding soils and damage modes of stations were different with regard to the existence of fender piles.Meanwhile,earthquake intensity influencing the seismic performance of stations with or without fender piles were found to be opposite.