In this study, the behavior of polycrystalline metals at different temperatures is investigated by a new thermo-elasto-plasticity constitutive theory. Based on solid mechanical and interatomic potential, the constitut...In this study, the behavior of polycrystalline metals at different temperatures is investigated by a new thermo-elasto-plasticity constitutive theory. Based on solid mechanical and interatomic potential, the constitutive equa- tion is established using a new decomposition of the deformation gradient. For polycrystalline copper and magnesium, the stress-strain curves from 77 to 764 K (copper), and 77 to 870 K (magnesium) under quasi-static uniaxial loading are calculated, and then the calculated results are compared with the experiment results. Also, it is determined that the present model has the capacity to describe the decrease of the elastic modulus and yield stress with the increasing temperature, as well as the change of hardening behaviors of the polycrystalline metals. The calculation process is simple and explicit, which makes it easy to implement into the applications.展开更多
Based on the elasto-plastic mechanics and continuum damage theory, a yield criterion related to spherical tensor of stress is proposed to describe the mixed hardening of damaged orthotropic materials. Its dimensionles...Based on the elasto-plastic mechanics and continuum damage theory, a yield criterion related to spherical tensor of stress is proposed to describe the mixed hardening of damaged orthotropic materials. Its dimensionless form is isomorphic with the Mises criterion for isotropic materials. Furthermore, the incremental elasto-plastic damage constitutive equations and damage evolution equations are established. Based on the classical nonlinear plate theory, the incremental nonlinear equilibrium equations of orthotropic thin plates considering damage effect are obtained, and solved with the finite difference and iteration methods. In the numerical examples, the effects of damage evolution and initial deflection on the elasto-plastic postbuckling of orthotropic plates are discussed in detail.展开更多
基金supported by the National Natural Science Foundation of China (Grants 11021262, 11172303, 11132011)National Basic Research Program of China through 2012CB937500
文摘In this study, the behavior of polycrystalline metals at different temperatures is investigated by a new thermo-elasto-plasticity constitutive theory. Based on solid mechanical and interatomic potential, the constitutive equa- tion is established using a new decomposition of the deformation gradient. For polycrystalline copper and magnesium, the stress-strain curves from 77 to 764 K (copper), and 77 to 870 K (magnesium) under quasi-static uniaxial loading are calculated, and then the calculated results are compared with the experiment results. Also, it is determined that the present model has the capacity to describe the decrease of the elastic modulus and yield stress with the increasing temperature, as well as the change of hardening behaviors of the polycrystalline metals. The calculation process is simple and explicit, which makes it easy to implement into the applications.
基金Project supported by the National Natural Science Foundation of China (No.10572049)
文摘Based on the elasto-plastic mechanics and continuum damage theory, a yield criterion related to spherical tensor of stress is proposed to describe the mixed hardening of damaged orthotropic materials. Its dimensionless form is isomorphic with the Mises criterion for isotropic materials. Furthermore, the incremental elasto-plastic damage constitutive equations and damage evolution equations are established. Based on the classical nonlinear plate theory, the incremental nonlinear equilibrium equations of orthotropic thin plates considering damage effect are obtained, and solved with the finite difference and iteration methods. In the numerical examples, the effects of damage evolution and initial deflection on the elasto-plastic postbuckling of orthotropic plates are discussed in detail.