To investigate the buckling and post buckling behaviors of elastic thin plate under frictionless unilateral restraint, enduring the coupling action of lognitudinal and transverse loads, the principle of minimum poten...To investigate the buckling and post buckling behaviors of elastic thin plate under frictionless unilateral restraint, enduring the coupling action of lognitudinal and transverse loads, the principle of minimum potential energy and variational method are used and series functions with unknown coefficients are taken as trial functions of functional to solve the large deflection and non linear bending problem of a thin plate and find relation curves between deflection of plate and loads. The proposed method can capture the buckling and post buckling behaviors of a thin plate in different geometrical and load boundary conditions. The analysis confirms that there occur snap and bifurcation behaviors in the post buckling stage of the plate. And these results show the validity of the variational method for solving buckling problems of thin plate.展开更多
On the basis of the general theory of perforated thin plates under large deflections, variational principles with deflection w and stress function F as variables are stated in detail.Based on these princi- ples,finite...On the basis of the general theory of perforated thin plates under large deflections, variational principles with deflection w and stress function F as variables are stated in detail.Based on these princi- ples,finite element method is established for analysing the buckling and post-buckling of perforated thin plates. It is found that the property of element is very complicated,owing to the multiple connexity of the region.展开更多
Based on von Karman's plate theory, the axisymmetric thermal buckling and post-buckling of the functionally graded material (FGM) circular plates with in- plane elastic restraints under transversely non-uniform tem...Based on von Karman's plate theory, the axisymmetric thermal buckling and post-buckling of the functionally graded material (FGM) circular plates with in- plane elastic restraints under transversely non-uniform temperature rise are studied. The properties of the FGM media are varied through the thickness based on a simple power law. The governing equations are numerically solved by a shooting method. The results of the critical buckling temperature, post-buckling equilibrium paths, and configurations for the in-plane elastically restrained plates are presented. The effects of the in-plane elastic restraints, material property gradient, and temperature variation on the responses of thermal buckling and post-buckling are examined in detail.展开更多
The post buckling strength of web plate of I section plate girders is considered to resist the shear force in many other countries code for design of steel structures,while it has not been considered in the Chinese ...The post buckling strength of web plate of I section plate girders is considered to resist the shear force in many other countries code for design of steel structures,while it has not been considered in the Chinese code GB J17-88.For the code revising,some important conclusions have been drawn through the theoretical analysis and experimental research of the post buckling strength of web plate of I section plate girders.展开更多
The prosperous post buckling load capacity of web plates of box girders can be used.In this article,the post buckling behaviour of web plates of box girders under different loading conditions is theoretically analyz...The prosperous post buckling load capacity of web plates of box girders can be used.In this article,the post buckling behaviour of web plates of box girders under different loading conditions is theoretically analyzed and on the basis of domestic and overseas design codes of steel structures,the corresponding simplified analysis methods are put forward for the engineering design or code revision.It is proved that the simplified methods are safe,efficient and practicable through the comparison between several results.展开更多
This paper is concerned with the nonlinear vibration problems of circular plates with variable thickness.The nonlinear equations of plates with variable thickness are extended to the dynamic case.The resulting equatio...This paper is concerned with the nonlinear vibration problems of circular plates with variable thickness.The nonlinear equations of plates with variable thickness are extended to the dynamic case.The resulting equations can be solved by using an iterative method,a Galerkin's approach and a perturbation method.Detailed solutions and numerical results are given for two kinds of boundary conditions,the clamped edge and the supported edge.The results show that the solutions for the case of the plates with uniform thickness can be included in the solution herin as a special case.The effect of various thickness parameters is investigated in detail.Also,a Runge Kutta method is used to solve the free and forced vibrations of plates with variable thickness,and the results are obtained firstly.It has shown that the adoption of variable thickness plate would be useful in engineering design.展开更多
文摘To investigate the buckling and post buckling behaviors of elastic thin plate under frictionless unilateral restraint, enduring the coupling action of lognitudinal and transverse loads, the principle of minimum potential energy and variational method are used and series functions with unknown coefficients are taken as trial functions of functional to solve the large deflection and non linear bending problem of a thin plate and find relation curves between deflection of plate and loads. The proposed method can capture the buckling and post buckling behaviors of a thin plate in different geometrical and load boundary conditions. The analysis confirms that there occur snap and bifurcation behaviors in the post buckling stage of the plate. And these results show the validity of the variational method for solving buckling problems of thin plate.
基金Project supported by National Natural Science Foundation of China.
文摘On the basis of the general theory of perforated thin plates under large deflections, variational principles with deflection w and stress function F as variables are stated in detail.Based on these princi- ples,finite element method is established for analysing the buckling and post-buckling of perforated thin plates. It is found that the property of element is very complicated,owing to the multiple connexity of the region.
基金Project supported by the National Natural Science Foundation of China(Nos.11272278 and11672260)the China Postdoctoral Science Foundation(No.149558)
文摘Based on von Karman's plate theory, the axisymmetric thermal buckling and post-buckling of the functionally graded material (FGM) circular plates with in- plane elastic restraints under transversely non-uniform temperature rise are studied. The properties of the FGM media are varied through the thickness based on a simple power law. The governing equations are numerically solved by a shooting method. The results of the critical buckling temperature, post-buckling equilibrium paths, and configurations for the in-plane elastically restrained plates are presented. The effects of the in-plane elastic restraints, material property gradient, and temperature variation on the responses of thermal buckling and post-buckling are examined in detail.
文摘The post buckling strength of web plate of I section plate girders is considered to resist the shear force in many other countries code for design of steel structures,while it has not been considered in the Chinese code GB J17-88.For the code revising,some important conclusions have been drawn through the theoretical analysis and experimental research of the post buckling strength of web plate of I section plate girders.
基金Supported by Ministry of Metallurgical Industry of China
文摘The prosperous post buckling load capacity of web plates of box girders can be used.In this article,the post buckling behaviour of web plates of box girders under different loading conditions is theoretically analyzed and on the basis of domestic and overseas design codes of steel structures,the corresponding simplified analysis methods are put forward for the engineering design or code revision.It is proved that the simplified methods are safe,efficient and practicable through the comparison between several results.
文摘This paper is concerned with the nonlinear vibration problems of circular plates with variable thickness.The nonlinear equations of plates with variable thickness are extended to the dynamic case.The resulting equations can be solved by using an iterative method,a Galerkin's approach and a perturbation method.Detailed solutions and numerical results are given for two kinds of boundary conditions,the clamped edge and the supported edge.The results show that the solutions for the case of the plates with uniform thickness can be included in the solution herin as a special case.The effect of various thickness parameters is investigated in detail.Also,a Runge Kutta method is used to solve the free and forced vibrations of plates with variable thickness,and the results are obtained firstly.It has shown that the adoption of variable thickness plate would be useful in engineering design.