期刊文献+
共找到83,194篇文章
< 1 2 250 >
每页显示 20 50 100
THE VIRTUAL WORK PRINCIPLE AND LINEAR COMPLEMEN-TARY METHOD FOR COUPLING ANALYSIS OF ELASTO-PLASTIC DAMAGE STRUCTURE
1
作者 马景槐 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2000年第2期185-192,共8页
The virtual displacement principle of elasto-plastic damage mechanics is presented. A linear complementary method for elasto-plastic damage problem is proposed by using FEM technique. This method is applicable to solv... The virtual displacement principle of elasto-plastic damage mechanics is presented. A linear complementary method for elasto-plastic damage problem is proposed by using FEM technique. This method is applicable to solving the damage structure analysis of hardened and softened nonlinear material. 展开更多
关键词 elasto-plastic damage mechanics virtual work principle FEM technique linear complementary method
下载PDF
Progressive Analysis of Bearing Failure in Pin-Loaded Composite Laminates Using an Elasto-Plastic Damage Model
2
作者 Kang Xue 《Materials Sciences and Applications》 2018年第7期576-595,共20页
Bearing failure of composite laminate is very complicated due to the complexity of different failure mechanisms and their interactions. In this paper, an elasto-plastic damage model is built up to describe the process... Bearing failure of composite laminate is very complicated due to the complexity of different failure mechanisms and their interactions. In this paper, an elasto-plastic damage model is built up to describe the process of failure in composite laminates subjected to bearing load. Non-linear behavior of composite before failure is taken into consideration by using a modified Sun-Chen one parameter plasticity model. LaRC05 failure criteria are employed to predict the initiation of failure and the evolution of failure is described by a CDM based stiffness degradation model. Both theory and some application issues like parameter determination are discussed according to phenomenon of experiments. The model is firstly validated by several experiment results of unidirectional laminate and then applicated into the progressive analysis of bearing failure in pin-loaded multidirectional laminates, both intralaminar and interlaminar damage are taken into consideration. The result of finite element analysis is compared with experiment results;it shows good agreements in both mechanical response and progress of failure, so the model can be evaluated to be effective and practical in bearing failure analysis of composite laminates. 展开更多
关键词 elasto-plastic damage Composite LAMINATES BEARING FAILURE PROGRESSIVE ANALYSIS
下载PDF
An Elasto-plastic Damage Constitutive Theory Based on Pair Functional Potentials and Slip Mechanism 被引量:4
3
作者 Liu Fang Fu Qiang +1 位作者 Chen Cen Liang Naigang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2010年第6期686-697,共12页
The deformation work rate can be expressed by the time rate of pair functional potentials which describe the energy of materi- als in terms of atomic bonds and atom embedding interactions. According to Cauchy-Born rul... The deformation work rate can be expressed by the time rate of pair functional potentials which describe the energy of materi- als in terms of atomic bonds and atom embedding interactions. According to Cauchy-Born rule, the relations between the micro- scopic deformations of atomic bonds and electron gas and macroscopic deformation are established. Further, atomic bonds are grouped according to their directions, and atomic bonds in the same direction are simplified as a spring-bundle component. Atom embedding interactions in unit reference volume are simplified as a cubage component. Consequently, a material model com- posed of spring-bundle components and a cubage component is established. Since the essence of damage is the decrease and loss of atomic bonding forces, the damage effect can be reflected by the response functions of these two kinds of components. For- mulating the mechanical responses of two kinds of components, the corresponding elasto-damage constitutive equations are de- rived. Considering that slip is the main plastic deformation mechanism of polycrystalline metals, the slip systems of crystal are extended to polycrystalline, and the slip components are proposed to describe the plastic deformation. Based on the decomposition of deformation gradient and combining the plastic response with the elasto-damage one, the elasto-plastic damage constitutive equations are derived. As a result, a material model iormulated with spring-bundle components, a cubage component and slip components is established. Different from phenomenological constitutive theories, the mechanical property of materials depends on the property of components rather than that directly obtained on the representative volume element. The effect of finite deformation is taken into account in this model. Parameter calibration procedure and the basic characteristics of this model are discussed. 展开更多
关键词 elasto-plastic damage constitutive relation finite deformation pair functional potentials Cauchy-Born rule slipmechanism component assembling model
原文传递
Elasto-plastic postbuckling of damaged orthotropic plates
4
作者 田燕萍 傅衣铭 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第7期841-853,共13页
Based on the elasto-plastic mechanics and continuum damage theory, a yield criterion related to spherical tensor of stress is proposed to describe the mixed hardening of damaged orthotropic materials. Its dimensionles... Based on the elasto-plastic mechanics and continuum damage theory, a yield criterion related to spherical tensor of stress is proposed to describe the mixed hardening of damaged orthotropic materials. Its dimensionless form is isomorphic with the Mises criterion for isotropic materials. Furthermore, the incremental elasto-plastic damage constitutive equations and damage evolution equations are established. Based on the classical nonlinear plate theory, the incremental nonlinear equilibrium equations of orthotropic thin plates considering damage effect are obtained, and solved with the finite difference and iteration methods. In the numerical examples, the effects of damage evolution and initial deflection on the elasto-plastic postbuckling of orthotropic plates are discussed in detail. 展开更多
关键词 orthotropic plates elasto-plastic damage elasto-plastic postbuckling mixed hardening incremental theory
下载PDF
Impact of Zika virus non-structural protein mutations on hippocampal damage
5
作者 Larissa M.G.Cassiano Roney S.Coimbra 《Neural Regeneration Research》 SCIE CAS 2025年第8期2307-2308,共2页
The Zika virus(ZIKV),a member of the Flaviviridae family,attracted worldwide attention for its connection to severe neurological effects,notably microcephaly in newborns,first reported during the 2015 epidemic in Braz... The Zika virus(ZIKV),a member of the Flaviviridae family,attracted worldwide attention for its connection to severe neurological effects,notably microcephaly in newborns,first reported during the 2015 epidemic in Brazil.Yet,its impact goes beyond fetal and neonatal abnormalities,also affecting the central nervous system(CNS)in both children and adults,leading to enduring cognitive and behavioral impairments. 展开更多
关键词 damage FETAL NEONATAL
下载PDF
Experimental Observing Damage Evolution in Cement Pastes Exposed to External Sulfate Attack by in situ X-ray Computed Tomography
6
作者 WU Min CAO Kailei +4 位作者 XIAO Weirong YU Zetai CAO Jierong DING Qingjun LI Jinhui 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期164-170,共7页
The paper presents experimental investigation results of crack pattern change in cement pastes caused by external sulfate attack(ESA).To visualize the formation and development of cracks in cement pastes under ESA,an ... The paper presents experimental investigation results of crack pattern change in cement pastes caused by external sulfate attack(ESA).To visualize the formation and development of cracks in cement pastes under ESA,an X-ray computed tomography(X-ray CT)was used,i e,the tomography system of Zeiss Xradia 510 versa.The results indicate that X-CT can monitor the development process and distribution characteristics of the internal cracks of cement pastes under ESA with attack time.In addition,the C3A content in the cement significantly affects the damage mode of cement paste specimens during sulfate erosion.The damage of ordinary Portland cement(OPC)pastes subjected to sulfate attack with high C3A content are severe,while the damage of sulfate resistant Portland cement(SRPC)pastes is much smaller than that of OPC pastes.Furthermore,a quadratic function describes the correlation between the crack volume fraction and development depth for two cement pastes immermed in sulfate solution. 展开更多
关键词 CONCRETE external sulfate attack damage evolution situ X-ray computed tomography
下载PDF
Structural Modal Parameter Recognition and Related Damage Identification Methods under Environmental Excitations: A Review
7
作者 Chao Zhang Shang-Xi Lai Hua-Ping Wang 《Structural Durability & Health Monitoring》 EI 2025年第1期25-54,共30页
Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters accordi... Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems. 展开更多
关键词 Structural health monitoring data information modal parameters damage identification AI method
下载PDF
Potential effects of adenosine triphosphate and melatonin on oxidative and inflammatory optic nerve damage in rats caused by 5-fluorouracil
8
作者 Ahmet Mehmet Somuncu Busra Parlak Somuncu +8 位作者 Ahmet Duhan Ozbay Ibrahim Cicek Bahadir Suleyman Renad Mammadov Seval Bulut Tugba Bal Tastan Taha Abdulkadir Coban Halis Suleyman Aliyev Aydin 《International Journal of Ophthalmology(English edition)》 2025年第2期222-228,共7页
AIM:To investigate the effects of adenosine triphosphate(ATP)and melatonin,which have antioxidant and antiinflammatory activities,on potential 5-fluorouracil(5-FU)-induced optic nerve damage in rats.METHODS:Twenty-fou... AIM:To investigate the effects of adenosine triphosphate(ATP)and melatonin,which have antioxidant and antiinflammatory activities,on potential 5-fluorouracil(5-FU)-induced optic nerve damage in rats.METHODS:Twenty-four rats were categorized into four groups of six rats:healthy(HG),5-FU(FUG),ATP+5-FU(AFU),and melatonin+5-FU(MFU).ATP(4 mg/kg)and melatonin(10 mg/kg)were administered intraperitoneally and orally,respectively.One hour after ATP and melatonin administration,rats in the AFU,MFU,and FUG were intraperitoneally injected with 5-FU(100 mg/kg).ATP and melatonin were administered once daily for 10d.5-FU was administered at a single dose on days 1,3,and 5 of the experiment.After 10d,the rats were euthanized and optic nerve tissues were extracted.Optic nerve tissues were biochemically and histopathologically examined.RESULTS:ATP and melatonin treatments inhibited the increase in malondialdehyde(MDA)and interleukin-6(IL-6)levels,which were elevated in the FUG.The treatments also prevented the decrease in total glutathione(tGSH)levels and the superoxide dismutase(SOD)and catalase(CAT)activities(P<0.001).This inhibition was higher in the ATP group than in the melatonin group(P<0.001).ATP prevented histopathological damage better than melatonin(P<0.05).CONCLUSION:ATP and melatonin have the potential to be used in alleviating 5-FU-induced optic nerve damage.In addition,ATP treatment shows better protective effects than melatonin. 展开更多
关键词 adenosine triphosphate MELATONIN 5-FLUOROURACIL optic nerve damage ANTIOXIDANT ANTIINFLAMMATORY
下载PDF
Performance Evaluation of Damaged T-Beam Bridges with External Prestressing Reinforcement Based on Natural Frequencies
9
作者 Menghui Hao Shanshan Zhou +4 位作者 Yongchao Han Zhanwei Zhu Qiang Yang Panxu Sun Jiajun Fan 《Structural Durability & Health Monitoring》 2025年第2期399-415,共17页
As an evaluation index,the natural frequency has the advantages of easy acquisition and quantitative evaluation.In this paper,the natural frequency is used to evaluate the performance of external cable reinforced brid... As an evaluation index,the natural frequency has the advantages of easy acquisition and quantitative evaluation.In this paper,the natural frequency is used to evaluate the performance of external cable reinforced bridges.Numerical examples show that compared with the natural frequencies of first-order modes,the natural frequencies of higher-order modes are more sensitive and can reflect the damage situation and external cable reinforcement effect of T-beam bridges.For damaged bridges,as the damage to the T-beam increases,the natural frequency value of the bridge gradually decreases.When the degree of local damage to the beam reaches 60%,the amplitude of natural frequency change exceeds 10%for the first time.The natural frequencies of the firstorder vibration mode and higher-order vibration mode can be selected as indexes for different degrees of the damaged T-beam bridges.For damaged bridges reinforced with external cables,the traditional natural frequency of the first-order vibration mode cannot be used as the index,which is insensitive to changes in prestress of the external cable.Some natural frequencies of higher-order vibration modes can be selected as indexes,which can reflect the reinforcement effect of externally prestressed damaged T-beam bridges,and its numerical value increases with the increase of external prestressed cable force. 展开更多
关键词 Performance evaluation natural frequency T-beam bridge damage external cable reinforcement
下载PDF
A Damage Control Model for Reinforced Concrete Pier Columns Based on Pre-Damage Tests under Cyclic Reverse Loading
10
作者 Zhao-Jun Zhang Jing-Shui Zhen +3 位作者 Bo-Cheng Li De-Cheng Cai Yang-Yang Du Wen-Wei Wang 《Structural Durability & Health Monitoring》 2025年第2期327-346,共20页
To mitigate the challenges in managing the damage level of reinforced concrete(RC)pier columns subjected to cyclic reverse loading,this study conducted a series of cyclic reverse tests on RC pier columns.By analyzing ... To mitigate the challenges in managing the damage level of reinforced concrete(RC)pier columns subjected to cyclic reverse loading,this study conducted a series of cyclic reverse tests on RC pier columns.By analyzing the outcomes of destructive testing on various specimens and fine-tuning the results with the aid of the IMK(Ibarra Medina Krawinkler)recovery model,the energy dissipation capacity coefficient of the pier columns were able to be determined.Furthermore,utilizing the calibrated damage model parameters,the damage index for each specimen were calculated.Based on the obtained damage levels,three distinct pre-damage conditions were designed for the pier columns:minor damage,moderate damage,and severe damage.The study then predicted the variations in hysteresis curves and damage indices under cyclic loading conditions.The experimental findings reveal that the displacement at the top of the pier columns can serve as a reliable indicator for controlling the damage level of pier columns post-loading.Moreover,the calibrated damage index model exhibits proficiency in accurately predicting the damage level of RC pier columns under cyclic loading. 展开更多
关键词 Reinforced concrete pier cyclic reverse load pre-damage damage index displacement control
下载PDF
Machine learning based damage state identification:A novel perspective on fragility analysis for nuclear power plants considering structural uncertainties
11
作者 Zheng Zhi Wang Yong +1 位作者 Pan Xiaolan Ji Duofa 《Earthquake Engineering and Engineering Vibration》 2025年第1期201-222,共22页
Seismic fragility analysis(SFA)is known as an effective probabilistic-based approach used to evaluate seismic fragility.There are various sources of uncertainties associated with this approach.A nuclear power plant(NP... Seismic fragility analysis(SFA)is known as an effective probabilistic-based approach used to evaluate seismic fragility.There are various sources of uncertainties associated with this approach.A nuclear power plant(NPP)system is an extremely important infrastructure and contains many structural uncertainties due to construction issues or structural deterioration during service.Simulation of structural uncertainties effects is a costly and time-consuming endeavor.A novel approach to SFA for the NPP considering structural uncertainties based on the damage state is proposed and examined.The results suggest that considering the structural uncertainties is essential in assessing the fragility of the NPP structure,and the impact of structural uncertainties tends to increase with the state of damage.Subsequently,machine learning(ML)is found to be superior in high-precision damage state identification of the NPP for reducing the time of nonlinear time-history analysis(NLTHA)and could be applied in the damage state-based SFA.Also,the impact of various sources of uncertainties is investigated through sensitivity analysis.The Sobol and Shapley additive explanations(SHAP)method can be complementary to each other and able to solve the problem of quantifying seismic and structural uncertainties simultaneously and the interaction effect of each parameter. 展开更多
关键词 seismic fragility analysis damage state structural uncertainties machine learning sensitivity analysis
下载PDF
Mesoscopic fracture damage evolution and fractal damage constitutive model of heat-treated red sandstone under direct tensile impact loadings
12
作者 Shi Liu Yu Jia +1 位作者 Yue Zhai Shaoxu Hao 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期323-340,共18页
Understanding the mesoscopic tensile fracture damage of rock is the basis of evaluating the deterioration process of mechanical properties of heat-damaged rock. For this, tensile tests of rocks under high-temperature ... Understanding the mesoscopic tensile fracture damage of rock is the basis of evaluating the deterioration process of mechanical properties of heat-damaged rock. For this, tensile tests of rocks under high-temperature treatment were conducted with a ϕ75 mm split Hopkinson tension bar (SHTB) to investigate the mesoscopic fracture and damage properties of rock. An improved scanning electron microscopy (SEM) experimental method was used to analyze the tensile fracture surfaces of rock samples. Qualitative and quantitative analyses were performed to assess evolution of mesoscopic damage of heat-damaged rock under tensile loading. A constitutive model describing the mesoscopic fractal damage under thermo-mechanical coupling was established. The results showed that the high temperatures significantly reduced the tensile strength and fracture surface roughness of the red sandstone. The three-dimensional (3D) reconstruction of the fracture surface of the samples that experienced tensile failure at 900 °C showed a flat surface. The standard deviation of elevation and slope angle of specimen fracture surface first increased and then decreased with increasing temperature. The threshold for brittle fracture of the heat-damaged red sandstone specimens was 600 °C. Beyond this threshold temperature, local ductile fracture occurred, resulting in plastic deformation of the fracture surface during tensile fracturing. With increase of temperature, the internal meso-structure of samples was strengthened slightly at first and then deteriorated gradually, which was consistent with the change of macroscopic mechanical properties of red sandstone. The mesoscopic characteristics, such as the number, mean side length, maximum area, porosity, and fractal dimension of crack, exhibited an initial decline, followed by a gradual increase. The development of microcracks in samples had significant influence on mesoscopic fractal dimension. The mesoscopic fractal characteristics were used to establish a mesoscopic fractal damage constitutive model for red sandstone, and the agreement between the theoretical and experimental results validated the proposed model. 展开更多
关键词 High temperature rock mechanics Dynamic direct tension Red sandstone Mesoscopic fracture mechanism Fractal damage constitutive model
下载PDF
An elasto-plastic and viscoplastic damage constitutive model for dilatancy and fracturing behavior of soft rock squeezing deformation 被引量:2
13
作者 HUANG Xing LIU Quan-sheng +3 位作者 BO Yin LIU Bin DING Zi-wei ZHANG Quan-tai 《Journal of Mountain Science》 SCIE CSCD 2022年第3期826-848,共23页
Soft rock squeezing deformation mainly consists of pre-peak damage-dilatancy and post-peak fracture-bulking at the excavation unloading instant,and creep-dilatancy caused by time-dependent damage and fracturing.Based ... Soft rock squeezing deformation mainly consists of pre-peak damage-dilatancy and post-peak fracture-bulking at the excavation unloading instant,and creep-dilatancy caused by time-dependent damage and fracturing.Based on the classic elastoplastic and Perzyna over-stress viscoplastic theories,as well as triaxial unloading confining pressure test and triaxial unloading creep test results,an elastoplastic and viscoplastic damage constitutive model is established for the short-and long-term dilatancy and fracturing behavior of soft rock squeezing deformation.Firstly,the criteria for each deformation and failure stage are expressed as a linear function of confining pressure.Secondly,the total damage evolution equation considering time-dependent damage is proposed,including the initial damage produced at the excavation instant,in which the damage variable increases exponentially with the lateral strain,and creep damage.Thirdly,a transient five-stages elasto-plastic constitutive equation for the short-term deformation after excavation that comprised of elasticity,pre-peak damage-dilatancy,post-peak brittle-drop,linear strain-softening,and residual perfectly-plastic regimes is developed based on incremental elasto-plastic theory and the nonassociated flow rule.Fourthly,regarding the timedependent properties of soft rock,based on the Perzyna viscoplastic over-stress theory,a viscoplastic damage model is set up to capture creep damage and dilatancy behavior.Viscoplastic strain is produced when the stress exceeds the initial static yield surface fs;the distance between the static yield surface fs and the dynamic yield surface fd determines the viscoplastic strain rate.Finally,the established constitutive model is numerically implemented and field applied to the-848 m belt conveyer haulage roadway of Huainan Panyidong Coal Mine.Laboratory test results and in-situ monitoring results validate the rationality of the established constitutive model.The presented model takes both the transient and time-dependent damage and fracturing into consideration. 展开更多
关键词 Soft rock Squeezing deformation damage DILATANCY FRACTURING elasto-plastic and viscoplastic damage constitutive model
下载PDF
INVESTIGATION ON GRADIENT-DEPENDENT NONLOCAL CONSTITUTIVE MODELS FOR ELASTO-PLASTICITY COUPLED WITH DAMAGE 被引量:1
14
作者 沈新普 沈国晓 +1 位作者 陈立新 杨璐 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2005年第2期218-233,共16页
Firstly, typical) gradient-dependent nonlocal inelastic models were briefly reviewed. Secondly, based on the principle of ‘gradient-dependent energy dissipation', a gradient-dependent constitutive model for plast... Firstly, typical) gradient-dependent nonlocal inelastic models were briefly reviewed. Secondly, based on the principle of ‘gradient-dependent energy dissipation', a gradient-dependent constitutive model for plasticity coupled with isotropic damage was presented in the framework of continuum thermodynamics. Numerical scheme for calculation of Laplacian term of damage field with the numerical results obtained by FEM calculation was proposed. Equations have been presented on the basis of Taylor series for both 2-dimensional and 3-dimensional cases, respectively. Numerical results have indicated the validity of the proposed gradient-dependent model and corresponding numerical scheme. 展开更多
关键词 damage PLASTICITY NONLOCAL constitutive model gradient-dependent
下载PDF
INVESTIGATION ON ELASTO-PLASTIC CONSTITUTIVE MODEL COUPLED WITH DAMAGE FOR LOCALIZATION PHENOMENA
15
作者 沈新普 沈国晓 陈立新 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2004年第12期1365-1373,共9页
On the basis of existing plasticity-based damage model for plasticity coupled with damage for localization analysis, constitutive parameter identification was carried out through a series of numerical tests at local l... On the basis of existing plasticity-based damage model for plasticity coupled with damage for localization analysis, constitutive parameter identification was carried out through a series of numerical tests at local level.And then improvements were made on the expressions of the evolution laws of damage. Strain localization phenomena were simulated with a typical double-notched specimen under tensions. Numerical results indicate the validity of the proposed theory. 展开更多
关键词 damage PLASTICITY LOCALIZATION constitutive model
下载PDF
Rockburst criterion and evaluation method for potential rockburst pit depth considering excavation damage effect 被引量:2
16
作者 Jinhao Dai Fengqiang Gong Lei Xu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1649-1666,共18页
Excavation-induced disturbances in deep tunnels will lead to deterioration of rock properties and formation of excavation damaged zone(EDZ).This excavation damage effect may affect the potential rockburst pit depth.Ta... Excavation-induced disturbances in deep tunnels will lead to deterioration of rock properties and formation of excavation damaged zone(EDZ).This excavation damage effect may affect the potential rockburst pit depth.Taking two diversion tunnels of Jinping II hydropower station for example,the relationship between rockburst pit depth and excavation damage effect is first surveyed.The results indicate that the rockburst pit depth in tunnels with severe damage to rock masses is relatively large.Subsequently,the excavation-induced damage effect is characterized by disturbance factor D based on the Hoek-Brown criterion and wave velocity method.It is found that the EDZ could be further divided into a high-damage zone(HDZ)with D=1 and weak-damage zone(WDZ),and D decays from one to zero linearly.For this,a quantitative evaluation method for potential rockburst pit depth is established by presenting a three-element rockburst criterion considering rock strength,geostress and disturbance factor.The evaluation results obtained by this method match well with actual observations.In addition,the weakening of rock mass strength promotes the formation and expansion of potential rockburst pits.The potential rockburst pit depth is positively correlated with HDZ and WDZ depths,and the HDZ depth has a significant contribution to the potential rockburst pit depth. 展开更多
关键词 Deep tunnel ROCKBURST Rockburst pit Excavation damage effect Hoek-Brown criterion
下载PDF
Modulation of p75 neurotrophin receptor mitigates brain damage following ischemic stroke in mice 被引量:1
17
作者 Golnoush Mirzahosseini Tauheed Ishrat 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2093-2094,共2页
Stroke is a significant leading cause of death and disability in the United States(Tsao et al.,2022).Approximately 87% of strokes fall into the ischemic category,mainly caused by arterial blockage(Jayaraj et al.,2019)... Stroke is a significant leading cause of death and disability in the United States(Tsao et al.,2022).Approximately 87% of strokes fall into the ischemic category,mainly caused by arterial blockage(Jayaraj et al.,2019).Although the only FDA-approved effective medication is tissue plasminogen activator(tPA),it should be administrated within 4.5 hours of ischemic stroke.Furthermore,tPA has been an integral part of managing acute ischemic stro ke. 展开更多
关键词 damage ARTERIAL DEATH P75
下载PDF
An extended micromechanical-based plastic damage model for understanding water effects on quasi-brittle rocks 被引量:1
18
作者 Qiaojuan Yu Shigui Du +3 位作者 Qizhi Zhu Zhanyou Luo Sili Liu Lunyang Zhao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期289-304,共16页
Water effects on the mechanical properties of rocks have been extensively investigated through experiments and numerical models.However,few studies have established a comprehensive link between the microscopic mechani... Water effects on the mechanical properties of rocks have been extensively investigated through experiments and numerical models.However,few studies have established a comprehensive link between the microscopic mechanisms of water-related micro-crack and the constitutive behaviors of rocks.In this work,we shall propose an extended micromechanical-based plastic damage model for understanding weakening effect induced by the presence of water between micro-crack’s surfaces on quasi-brittle rocks,based on the Mori-Tanaka homogenization and irreversible thermodynamics framework.Regarding the physical mechanism,water strengthens micro-crack propagation,which induces damage evolution during the pre-and post-stage,and weakens the elastic effective properties of rock matrix.After proposing a special calibration procedure for the determination of model parameters based on the laboratory compression tests,the proposed micromechanical-based model is verified by comparing the model predictions to the experimental results.The model effectively captures the mechanical behaviors of quasibrittle rocks subjected to the weakening effects of water. 展开更多
关键词 Water MICRO-CRACK damage MICRO-MECHANICS Constitutive model Cohesive force
下载PDF
Damage evolution and removal behaviors of GaN crystals involved in double-grits grinding 被引量:1
19
作者 Chen Li Yuxiu Hu +4 位作者 Zongze Wei Chongjun Wu Yunfeng Peng Feihu Zhang Yanquan Geng 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期469-484,共16页
Elucidating the complex interactions between the work material and abrasives during grinding of gallium nitride(GaN)single crystals is an active and challenging research area.In this study,molecular dynamics simulatio... Elucidating the complex interactions between the work material and abrasives during grinding of gallium nitride(GaN)single crystals is an active and challenging research area.In this study,molecular dynamics simulations were performed on double-grits interacted grinding of GaN crystals;and the grinding force,coefficient of friction,stress distribution,plastic damage behaviors,and abrasive damage were systematically investigated.The results demonstrated that the interacted distance in both radial and transverse directions achieved better grinding quality than that in only one direction.The grinding force,grinding induced stress,subsurface damage depth,and abrasive wear increase as the transverse interacted distance increases.However,there was no clear correlation between the interaction distance and the number of atoms in the phase transition and dislocation length.Appropriate interacted distances between abrasives can decrease grinding force,coefficient of friction,grinding induced stress,subsurface damage depth,and abrasive wear during the grinding process.The results of grinding tests combined with cross-sectional transmission electron micrographs validated the simulated damage results,i.e.amorphous atoms,high-pressure phase transition,dislocations,stacking faults,and lattice distortions.The results of this study will deepen our understanding of damage accumulation and material removal resulting from coupling between abrasives during grinding and can be used to develop a feasible approach to the wheel design of ordered abrasives. 展开更多
关键词 GRINDING double-grits molecular dynamics damage material removal gallium nitride
下载PDF
A review of reservoir damage during hydraulic fracturing of deep and ultra-deep reservoirs 被引量:2
20
作者 Kun Zhang Xiong-Fei Liu +6 位作者 Dao-Bing Wang Bo Zheng Tun-Hao Chen Qing Wang Hao Bai Er-Dong Yao Fu-Jian Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期384-409,共26页
Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present u... Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present unique challenges due to their deep burial depth(4500-8882 m),low matrix permeability,complex crustal stress conditions,high temperature and pressure(HTHP,150-200℃,105-155 MPa),coupled with high salinity of formation water.Consequently,the costs associated with their exploitation and development are exceptionally high.In deep and ultra-deep reservoirs,hydraulic fracturing is commonly used to achieve high and stable production.During hydraulic fracturing,a substantial volume of fluid is injected into the reservoir.However,statistical analysis reveals that the flowback rate is typically less than 30%,leaving the majority of the fluid trapped within the reservoir.Therefore,hydraulic fracturing in deep reservoirs not only enhances the reservoir permeability by creating artificial fractures but also damages reservoirs due to the fracturing fluids involved.The challenging“three-high”environment of a deep reservoir,characterized by high temperature,high pressure,and high salinity,exacerbates conventional forms of damage,including water sensitivity,retention of fracturing fluids,rock creep,and proppant breakage.In addition,specific damage mechanisms come into play,such as fracturing fluid decomposition at elevated temperatures and proppant diagenetic reactions at HTHP conditions.Presently,the foremost concern in deep oil and gas development lies in effectively assessing the damage inflicted on these reservoirs by hydraulic fracturing,comprehending the underlying mechanisms,and selecting appropriate solutions.It's noteworthy that the majority of existing studies on reservoir damage primarily focus on conventional reservoirs,with limited attention given to deep reservoirs and a lack of systematic summaries.In light of this,our approach entails initially summarizing the current knowledge pertaining to the types of fracturing fluids employed in deep and ultra-deep reservoirs.Subsequently,we delve into a systematic examination of the damage processes and mechanisms caused by fracturing fluids within the context of hydraulic fracturing in deep reservoirs,taking into account the unique reservoir characteristics of high temperature,high pressure,and high in-situ stress.In addition,we provide an overview of research progress related to high-temperature deep reservoir fracturing fluid and the damage of aqueous fracturing fluids to rock matrix,both artificial and natural fractures,and sand-packed fractures.We conclude by offering a summary of current research advancements and future directions,which hold significant potential for facilitating the efficient development of deep oil and gas reservoirs while effectively mitigating reservoir damage. 展开更多
关键词 Artificial fracture Deep and ultra-deep reservoir Fracture conductivity Fracturing fluid Hydraulic fracturing Reservoir damage
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部