The significant impact of earthquakes on human lives and the built environment underscores the extensive human and economic losses caused by structural collapses. Over the years, researchers have focused on improving ...The significant impact of earthquakes on human lives and the built environment underscores the extensive human and economic losses caused by structural collapses. Over the years, researchers have focused on improving seismic design to mitigate earthquake-induced damages and enhance structural performance. In this study, a specific reinforced concrete (RC) frame structure at Kyungpook National University, designed for educational purposes, is analyzed as a representative case. Utilizing SAP 2000, the research conducts a nonlinear time history analysis to assess the structural performance under seismic conditions. The primary objective is to evaluate the influence of different column section designs, while maintaining identical column section areas, on structural behavior. The study employs two distinct seismic waves from Abeno (ABN) and Takatori (TKT) for the analysis, comparing the structural performance under varying seismic conditions. Key aspects examined include displacement, base shear force, base moment, joint radians, and layer displacement angle. This research is anticipated to serve as a valuable reference for seismic restraint reinforcement work on RC buildings, enriching the methods used for evaluating structures through nonlinear time history analysis based on the synthetic seismic wave approach.展开更多
This paper presents an investigation of the seismic behavior of reinforced concrete(RC)structures in which shear walls are the main lateral load-resisting elements and the participation of flat slab floor systems is n...This paper presents an investigation of the seismic behavior of reinforced concrete(RC)structures in which shear walls are the main lateral load-resisting elements and the participation of flat slab floor systems is not considered in the seismic design procedure.In this regard,the behavior of six prototype structures(with different heights and plan layouts)is investigated through nonlinear static and time history analyses,implemented in the OpenSees platform.The results of the analyses are presented in terms of the behavior of the slab-column connections and their mode of failure at different loading stages.Moreover,the global response of the buildings is discussed in terms of some parameters,such as lateral overstrength due to the gravity flat slab-column frames.According to the nonlinear static analyses,in structures in which the slab-column connections were designed only for gravity loads,the slab-column connections exhibited a punching mode of failure even in the early stages of loading.However,the punching failure was eliminated in structures in which a minimum transverse reinforcement recommended in ACI 318(2019)was provided in the slabs at joint regions.Furthermore,despite neglecting the contribution of gravity flat slab-column frames in the lateral load resistance of the structures,a relatively significant overstrength was imposed on the structures by the gravity frames.展开更多
Quayside container crane is a kind of huge dimension steel structure,which is the major equipment used for handling container at modern ports.With the aim to validate the safety and reliability of the crane under seis...Quayside container crane is a kind of huge dimension steel structure,which is the major equipment used for handling container at modern ports.With the aim to validate the safety and reliability of the crane under seismic loads,besides conventional analysis,elastic-plastic time history analysis under rare seismic intensity is carried out.An ideal finite element(FEM) elastic-plastic mechanical model of the quayside container crane is presented by using ANSYS codes.Furthermore,according to elastic-plastic time history analysis theory,deformation,stress and damage pattern of the structure under rare seismic intensity are investigated.Based on the above analysis,the established reliability model according to the reliability theory,together with seismic reliability analysis based on Monte-Carlo simulation is applied to practical analysis.The results show that the overall structure of the quayside container crane is generally unstable under rare seismic intensity,and the structure needs to be reinforced.展开更多
API RP2AWSD is a design code in practice for design of jacket platforms in the Persian Gulf but is based on the Gulf of Mexico environmental condition. So for the sake of using this code for the Persian Gulf, it is be...API RP2AWSD is a design code in practice for design of jacket platforms in the Persian Gulf but is based on the Gulf of Mexico environmental condition. So for the sake of using this code for the Persian Gulf, it is better to perform a calibration based on this specific region. Analysis and design of jacket platforms based on API code are performed in a static manner and dynamic analysis is not recommended for such structures. Regarding the fact that the real behavior of the offshore jacket platforms is a dynamic behavior, so in this research, dynamic analysis for an offshore jacket platform in the Persian Gulf under extreme environmental condition is performed using random time domain method. Therefore, a new constructed offshore jacket platform in the Persian Gulf is selected and analyzed. Fifteen, 1-h storm, simulations for the water surface elevation is produced to capture the statistical properties of extreme sea condition. Time series of base shear and overturning moment are derived from both dynamic and static responses. By calculating the maximum dynamic amplification factor (DAF) from each simulation and fitting the collected data to Weibull distribution, the most probable maximum extreme (MPME) value for the DAF is achieved. Results show that a realistic value for DAF for this specific platform is 1.06, which is a notable value and is recommended to take into practice in design of fixed jacket platform in the Persian Gulf.展开更多
The rigid central buckle employed in the Runyang Suspension Bridge (RSB) was the first time it was used in a suspension bridge in China. By using a spectral representation method and FFT technique combined with measur...The rigid central buckle employed in the Runyang Suspension Bridge (RSB) was the first time it was used in a suspension bridge in China. By using a spectral representation method and FFT technique combined with measured data,a 3D fluctuating wind field considering the tower wind effect is simulated. A novel FE model for buffeting analysis is then presented,in which a specific user-defined Matrix27 element in ANSYS is employed to simulate the aeroelastic forces and its stiffness or damping matrices are parameterized by wind velocity and vibration frequency. A nonlinear time history analysis is carried out to study the influence of the rigid central buckle on the wind-induced buffeting response of a long-span suspension bridge. The results can be used as a reference for wind resistance design of long-span suspension bridges with a rigid central buckle in the future.展开更多
The seismic capacity curves of three types of buildings including frame,frame-shear wall and shear wall ob- tained by pushover analysis under different lateral load patterns are compared with those from nonlinear time...The seismic capacity curves of three types of buildings including frame,frame-shear wall and shear wall ob- tained by pushover analysis under different lateral load patterns are compared with those from nonlinear time history analy- sis.Based on the numerical results obtained a two-phase load pattern:an inverted triangle(first mode)load pattern until the base shear force reaches β times its maximum value,V_(max)followed by a(x/H)~α form,here β and α being some coeffi- cients depending on the type of the structures considered,is proposed in the paper,which can provide excellent approxima- tion of the seismic capacity curve for low-to-mid-rise shear type buildings.Furthermore,it is shown both the two-phase load pattern proposed and the invariant uniform pattern can be used for low-to-mid-rise shear-bending type and low-rise bending type of buildings.No suitable load patterns have been found for high-rise buildings.展开更多
Based on the concept of structural passive control,a new type of slit shear wall,with improved seismic performance when compared to an ordinary solid shear wall,was proposed by the authors in 1996.The idea has been ve...Based on the concept of structural passive control,a new type of slit shear wall,with improved seismic performance when compared to an ordinary solid shear wall,was proposed by the authors in 1996.The idea has been verified by a series of pseudo-static and dynamic tests.In this paper a macro numerical model is developed for the wall element and the energy dissipation device.Then,nonlinear time history analysis is carried out for a 10-story slit shear wall model tested on a shaking table.Furthermore,the seismic input energy and the individual energy dissipated by the components are calculated by a method based on Newmark-β assumptions for this shear wall model,and the advantages of this shear wall are further demonstrated by the calculation results from the viewpoint of energy.Finally,according to the seismic damage criterion on the basis of plastic accumulative energy and maximum response,the optimal analysis is carried out to select design parameters for the energy dissipation device.展开更多
Considering that there are some limitations in analyzing the anti-sliding seismic stability of dam-foundation systems with the traditional pseudo-static method and response spectrum method, the dynamic strength reduct...Considering that there are some limitations in analyzing the anti-sliding seismic stability of dam-foundation systems with the traditional pseudo-static method and response spectrum method, the dynamic strength reduction method was used to study the deep anti-sliding stability of a high gravity dam with a complex dam foundation in response to strong earthquake-induced ground action. Based on static anti-sliding stability analysis of the dam foundation undertaken by decreasing the shear strength parameters of the rock mass in equal proportion, the seismic time history analysis was carried out. The proposed instability criterion for the dynamic strength reduction method was that the peak values of dynamic displacements and plastic strain energy change suddenly with the increase of the strength reduction factor. The elasto-plastic behavior of the dam foundation was idealized using the Drucker-Prager yield criterion based on the associated flow rule assumption. The result of elasto-plastic time history analysis of an overflow dam monolith based on the dynamic strength reduction method was compared with that of the dynamic linear elastic analysis, and the reliability of elasto-plastic time history analysis was confirmed. The results also show that the safety factors of the dam-foundation system in the static and dynamic cases are 3.25 and 3.0, respectively, and that the F2 fault has a significant influence on the anti-sliding stability of the high gravity dam. It is also concluded that the proposed instability criterion for the dynamic strength reduction method is feasible.展开更多
As there is a lack of earthquake damage data for factory buildings with seismic fortifications in China,seismic vulnerability analysis was performed by numerical simulation in this paper.The earthquake-structure analy...As there is a lack of earthquake damage data for factory buildings with seismic fortifications in China,seismic vulnerability analysis was performed by numerical simulation in this paper.The earthquake-structure analysis model was developed with considering the influence of uncertainties of the ground motion and structural model parameters.The small-size sampling was conducted based on the Latin hypercube sampling and orthogonal design methods.Using nonlinear analysis,the seismic vulnerability curves and damage probability matrix with various seismic fortification intensities(SFI)were obtained.The seismic capacity of the factory building was then evaluated.The results showed that,with different designs at different SFIs,the factory building could consistently achieve the three seismic fortification objectives.For the studied factory buildings with the SFI of 6,they satisfied the seismic fortification requirements of“no damage in moderate earthquakes,mendable in strong earthquakes”;for those buildings with SFIs of 7 and 8,the requirement of“no collapsing in super strong earthquakes”was generally met;while for those with SFIs of 9,the requirement of“mendable in moderate earthquakes”was almost satisfied.The results showed factory buildings designed with low SFIs are better at achieving the seismic fortification objectives than those designed with high SFIs.展开更多
A steel tower topping an RC building comprises a non-proportional damping structural sys- tem with different damping ratios. To compare the results from the non-proportional damping model and the equivalent damping mo...A steel tower topping an RC building comprises a non-proportional damping structural sys- tem with different damping ratios. To compare the results from the non-proportional damping model and the equivalent damping model.the structural system was calculated with the two damping mod- els during earthquake respectively, using earthquake time history analysis computer program devel- oped by the authors. Differences in the calculated results of inner forces and displacements using the two damping models were observed. It is found that if the equivalent damping model is used in design, the consequence will be unsafe for the steel tower and too safe for the RC building at the same time.展开更多
A 3D finite element model of the Huaiyin third pumping station of the Eastern Route of the South-to-North Water Transfer is described in this paper. Two methods were used in the calculation and vibration analysis of t...A 3D finite element model of the Huaiyin third pumping station of the Eastern Route of the South-to-North Water Transfer is described in this paper. Two methods were used in the calculation and vibration analysis of the pumping station in both the time domain and the frequency domain. The pressure pulsation field of the whole flow passage was structured on the basis of pressure pulsations recorded at some locations of the physical model test. Dynamic time-history analysis of the pump house under pressure pulsations was carried out. At the same time, according to spectrum characteristics of the pressure pulsations at measuring points and results of free vibration characteristics analysis of the pump house, the spectrum analysis method of random vibration was used to calculate dynamic responses of the pump house. Results from both methods are consistent, which indicates that they are both reasonable. The results can be used for reference in anti-vibration safety evaluation of the Huaiyin third pumping station.展开更多
The present investigation deals with process analysis of oxy-acetylene flame assisted double pass line heating for varying plate thickness, oxy-acetylene flame as the heat source for multi pass line heating to achieve...The present investigation deals with process analysis of oxy-acetylene flame assisted double pass line heating for varying plate thickness, oxy-acetylene flame as the heat source for multi pass line heating to achieve 3-D bending of plates with varying thicknesses was studied. The oxy-acetylene flame was modeled as the moving heat source in the FEM analysis. The transient thermal histories were predicted taking into account the temperature dependent thermo-mechanical properties. A comparative study between single pass and double pass line heating residual deformation was also carried out. The temperature distribution and residual detbrmations predicted by the numerical model developed in the present work compared fairly well with those of the experimental ones.展开更多
Load pattern selection is one of the critical issues in pushover analysis (POA) when the influence of higher modes is evident. In terms of interstory drift, comparisons between the nonlinear time history analysis (NL-...Load pattern selection is one of the critical issues in pushover analysis (POA) when the influence of higher modes is evident. In terms of interstory drift, comparisons between the nonlinear time history analysis (NL-THA) and the pushover analysis (POA) were conducted for three typical RC frame buildings under a variety of ground motion levels. Eight typical earthquake inputs, including four earthquake records and four artificial earthquake waves, were employed as the input of NL-THA; five typical lateral load patterns were considered in POA. By means of modal participation factor, the higher mode effect in POA was quantified considering floor numbers and the ground motion intensity. Suggestions about load pattern selection in POA were provided when higher mode influence was found evident.展开更多
This paper presents an effective means of analyzing the safety of a tunnel under dynamic loading in areas<span style="font-family:Verdana;"> </span><span style="font-family:Verdana;"...This paper presents an effective means of analyzing the safety of a tunnel under dynamic loading in areas<span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">with seismic records. A particular case of the railway tunnel in the earthquake-prone regions of the escarpment seismic zone of Ethiopia was the specific focus area of the research. Probabilistic seismic hazard analysis (PSHA) and deaggregation have been conducted to determine the design earthquake required as an input for the dynamic analysis. The PSHA</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">performed by considering the operating design earthquake with conservative assumptions of the local geological features resulted in a peak ground acceleration of 0.36. Two pairs of design earthquake have been obtained from the deaggregation process, which were used to filter acceleration time histories for the selected design earthquake from the ground motion database of Pacific Earthquake Engineering Research Center. Finally, full dynamic analyses of the tunnel have been performed by applying the scaled acceleration time histories corresponding to the structure in the specific site. It was demonstrated how to prove the stability of the tunnel located in difficult ground conditions by performing plane strain analyses with the possible minimum computational efforts.</span>展开更多
In the present study, finite element dynamic analysis or time history analysis of two-span beams subjected to asynchronous multi-support motions is carried out by using the moving support finite element. The elemental...In the present study, finite element dynamic analysis or time history analysis of two-span beams subjected to asynchronous multi-support motions is carried out by using the moving support finite element. The elemental equation of the element is based on total displacements and is derived under the concept of the quasi-static displacement decomposition. The use of moving support element shows that the element is very simple and convenient to represent continuous beam moving, deforming and vibrating simultaneously due to support motions. The comparison between the numerical results and analytical solutions indicates that the FE result agrees with the analytical solution.展开更多
It has been a period of time since the concept of scenario earthquake was proposed, but this concept has rarely been used in seismic safety evaluation in China since then. Meanwhile, because of the uncertainties of ma...It has been a period of time since the concept of scenario earthquake was proposed, but this concept has rarely been used in seismic safety evaluation in China since then. Meanwhile, because of the uncertainties of magnitudes-distances pairs, there is large arbitrariness while determining the envelope function of time histories in seismic hazard analysis. In this paper, we describe a method to control the envelope functions of the time histories by introducing the most-likely combinations of magnitude and distance of the scenario earthquakes based on a probabilistic method, revise the software of the ellipse model for seismic hazard analysis, and give a computation example.展开更多
文摘The significant impact of earthquakes on human lives and the built environment underscores the extensive human and economic losses caused by structural collapses. Over the years, researchers have focused on improving seismic design to mitigate earthquake-induced damages and enhance structural performance. In this study, a specific reinforced concrete (RC) frame structure at Kyungpook National University, designed for educational purposes, is analyzed as a representative case. Utilizing SAP 2000, the research conducts a nonlinear time history analysis to assess the structural performance under seismic conditions. The primary objective is to evaluate the influence of different column section designs, while maintaining identical column section areas, on structural behavior. The study employs two distinct seismic waves from Abeno (ABN) and Takatori (TKT) for the analysis, comparing the structural performance under varying seismic conditions. Key aspects examined include displacement, base shear force, base moment, joint radians, and layer displacement angle. This research is anticipated to serve as a valuable reference for seismic restraint reinforcement work on RC buildings, enriching the methods used for evaluating structures through nonlinear time history analysis based on the synthetic seismic wave approach.
文摘This paper presents an investigation of the seismic behavior of reinforced concrete(RC)structures in which shear walls are the main lateral load-resisting elements and the participation of flat slab floor systems is not considered in the seismic design procedure.In this regard,the behavior of six prototype structures(with different heights and plan layouts)is investigated through nonlinear static and time history analyses,implemented in the OpenSees platform.The results of the analyses are presented in terms of the behavior of the slab-column connections and their mode of failure at different loading stages.Moreover,the global response of the buildings is discussed in terms of some parameters,such as lateral overstrength due to the gravity flat slab-column frames.According to the nonlinear static analyses,in structures in which the slab-column connections were designed only for gravity loads,the slab-column connections exhibited a punching mode of failure even in the early stages of loading.However,the punching failure was eliminated in structures in which a minimum transverse reinforcement recommended in ACI 318(2019)was provided in the slabs at joint regions.Furthermore,despite neglecting the contribution of gravity flat slab-column frames in the lateral load resistance of the structures,a relatively significant overstrength was imposed on the structures by the gravity frames.
基金supported by National High Technology Research and Development Program 863 Plan (No. 2009AA043000)
文摘Quayside container crane is a kind of huge dimension steel structure,which is the major equipment used for handling container at modern ports.With the aim to validate the safety and reliability of the crane under seismic loads,besides conventional analysis,elastic-plastic time history analysis under rare seismic intensity is carried out.An ideal finite element(FEM) elastic-plastic mechanical model of the quayside container crane is presented by using ANSYS codes.Furthermore,according to elastic-plastic time history analysis theory,deformation,stress and damage pattern of the structure under rare seismic intensity are investigated.Based on the above analysis,the established reliability model according to the reliability theory,together with seismic reliability analysis based on Monte-Carlo simulation is applied to practical analysis.The results show that the overall structure of the quayside container crane is generally unstable under rare seismic intensity,and the structure needs to be reinforced.
文摘API RP2AWSD is a design code in practice for design of jacket platforms in the Persian Gulf but is based on the Gulf of Mexico environmental condition. So for the sake of using this code for the Persian Gulf, it is better to perform a calibration based on this specific region. Analysis and design of jacket platforms based on API code are performed in a static manner and dynamic analysis is not recommended for such structures. Regarding the fact that the real behavior of the offshore jacket platforms is a dynamic behavior, so in this research, dynamic analysis for an offshore jacket platform in the Persian Gulf under extreme environmental condition is performed using random time domain method. Therefore, a new constructed offshore jacket platform in the Persian Gulf is selected and analyzed. Fifteen, 1-h storm, simulations for the water surface elevation is produced to capture the statistical properties of extreme sea condition. Time series of base shear and overturning moment are derived from both dynamic and static responses. By calculating the maximum dynamic amplification factor (DAF) from each simulation and fitting the collected data to Weibull distribution, the most probable maximum extreme (MPME) value for the DAF is achieved. Results show that a realistic value for DAF for this specific platform is 1.06, which is a notable value and is recommended to take into practice in design of fixed jacket platform in the Persian Gulf.
基金The Key Project of the National Natural Science Foundation of China Under Grant No.50538020 the National Science Fund for Distinguished Young Scholars Under Grant No.50725828+2 种基金 the National Natural Science Foundation of China Under Grant No.50978056the National Natural Science Foundation of China for Young Scholars Under Grant No.50908046 the Ph.D.Programs Foundation of Ministry of Education of China (No.200802861012)
文摘The rigid central buckle employed in the Runyang Suspension Bridge (RSB) was the first time it was used in a suspension bridge in China. By using a spectral representation method and FFT technique combined with measured data,a 3D fluctuating wind field considering the tower wind effect is simulated. A novel FE model for buffeting analysis is then presented,in which a specific user-defined Matrix27 element in ANSYS is employed to simulate the aeroelastic forces and its stiffness or damping matrices are parameterized by wind velocity and vibration frequency. A nonlinear time history analysis is carried out to study the influence of the rigid central buckle on the wind-induced buffeting response of a long-span suspension bridge. The results can be used as a reference for wind resistance design of long-span suspension bridges with a rigid central buckle in the future.
文摘The seismic capacity curves of three types of buildings including frame,frame-shear wall and shear wall ob- tained by pushover analysis under different lateral load patterns are compared with those from nonlinear time history analy- sis.Based on the numerical results obtained a two-phase load pattern:an inverted triangle(first mode)load pattern until the base shear force reaches β times its maximum value,V_(max)followed by a(x/H)~α form,here β and α being some coeffi- cients depending on the type of the structures considered,is proposed in the paper,which can provide excellent approxima- tion of the seismic capacity curve for low-to-mid-rise shear type buildings.Furthermore,it is shown both the two-phase load pattern proposed and the invariant uniform pattern can be used for low-to-mid-rise shear-bending type and low-rise bending type of buildings.No suitable load patterns have been found for high-rise buildings.
文摘Based on the concept of structural passive control,a new type of slit shear wall,with improved seismic performance when compared to an ordinary solid shear wall,was proposed by the authors in 1996.The idea has been verified by a series of pseudo-static and dynamic tests.In this paper a macro numerical model is developed for the wall element and the energy dissipation device.Then,nonlinear time history analysis is carried out for a 10-story slit shear wall model tested on a shaking table.Furthermore,the seismic input energy and the individual energy dissipated by the components are calculated by a method based on Newmark-β assumptions for this shear wall model,and the advantages of this shear wall are further demonstrated by the calculation results from the viewpoint of energy.Finally,according to the seismic damage criterion on the basis of plastic accumulative energy and maximum response,the optimal analysis is carried out to select design parameters for the energy dissipation device.
基金supported by the National Basic Research Program of China (973 Program,Grant No.2007CB714104)the National Natural Science Foundation of China (Grant No. 50779011)the Innovative Project for Graduate Students of Jiangsu Province (Grant No. CX09B_155Z)
文摘Considering that there are some limitations in analyzing the anti-sliding seismic stability of dam-foundation systems with the traditional pseudo-static method and response spectrum method, the dynamic strength reduction method was used to study the deep anti-sliding stability of a high gravity dam with a complex dam foundation in response to strong earthquake-induced ground action. Based on static anti-sliding stability analysis of the dam foundation undertaken by decreasing the shear strength parameters of the rock mass in equal proportion, the seismic time history analysis was carried out. The proposed instability criterion for the dynamic strength reduction method was that the peak values of dynamic displacements and plastic strain energy change suddenly with the increase of the strength reduction factor. The elasto-plastic behavior of the dam foundation was idealized using the Drucker-Prager yield criterion based on the associated flow rule assumption. The result of elasto-plastic time history analysis of an overflow dam monolith based on the dynamic strength reduction method was compared with that of the dynamic linear elastic analysis, and the reliability of elasto-plastic time history analysis was confirmed. The results also show that the safety factors of the dam-foundation system in the static and dynamic cases are 3.25 and 3.0, respectively, and that the F2 fault has a significant influence on the anti-sliding stability of the high gravity dam. It is also concluded that the proposed instability criterion for the dynamic strength reduction method is feasible.
文摘As there is a lack of earthquake damage data for factory buildings with seismic fortifications in China,seismic vulnerability analysis was performed by numerical simulation in this paper.The earthquake-structure analysis model was developed with considering the influence of uncertainties of the ground motion and structural model parameters.The small-size sampling was conducted based on the Latin hypercube sampling and orthogonal design methods.Using nonlinear analysis,the seismic vulnerability curves and damage probability matrix with various seismic fortification intensities(SFI)were obtained.The seismic capacity of the factory building was then evaluated.The results showed that,with different designs at different SFIs,the factory building could consistently achieve the three seismic fortification objectives.For the studied factory buildings with the SFI of 6,they satisfied the seismic fortification requirements of“no damage in moderate earthquakes,mendable in strong earthquakes”;for those buildings with SFIs of 7 and 8,the requirement of“no collapsing in super strong earthquakes”was generally met;while for those with SFIs of 9,the requirement of“mendable in moderate earthquakes”was almost satisfied.The results showed factory buildings designed with low SFIs are better at achieving the seismic fortification objectives than those designed with high SFIs.
文摘A steel tower topping an RC building comprises a non-proportional damping structural sys- tem with different damping ratios. To compare the results from the non-proportional damping model and the equivalent damping model.the structural system was calculated with the two damping mod- els during earthquake respectively, using earthquake time history analysis computer program devel- oped by the authors. Differences in the calculated results of inner forces and displacements using the two damping models were observed. It is found that if the equivalent damping model is used in design, the consequence will be unsafe for the steel tower and too safe for the RC building at the same time.
基金supported by the National Science and Technology Support Program of China (Program for theEleventh Five-Year Plan, Grant No. 2006BAB04A03)the National Natural Science Foundation of China(Grant No. 10702019)
文摘A 3D finite element model of the Huaiyin third pumping station of the Eastern Route of the South-to-North Water Transfer is described in this paper. Two methods were used in the calculation and vibration analysis of the pumping station in both the time domain and the frequency domain. The pressure pulsation field of the whole flow passage was structured on the basis of pressure pulsations recorded at some locations of the physical model test. Dynamic time-history analysis of the pump house under pressure pulsations was carried out. At the same time, according to spectrum characteristics of the pressure pulsations at measuring points and results of free vibration characteristics analysis of the pump house, the spectrum analysis method of random vibration was used to calculate dynamic responses of the pump house. Results from both methods are consistent, which indicates that they are both reasonable. The results can be used for reference in anti-vibration safety evaluation of the Huaiyin third pumping station.
文摘The present investigation deals with process analysis of oxy-acetylene flame assisted double pass line heating for varying plate thickness, oxy-acetylene flame as the heat source for multi pass line heating to achieve 3-D bending of plates with varying thicknesses was studied. The oxy-acetylene flame was modeled as the moving heat source in the FEM analysis. The transient thermal histories were predicted taking into account the temperature dependent thermo-mechanical properties. A comparative study between single pass and double pass line heating residual deformation was also carried out. The temperature distribution and residual detbrmations predicted by the numerical model developed in the present work compared fairly well with those of the experimental ones.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50278029)the National Basic Research Program of China(Grant No.2007CB714202)
文摘Load pattern selection is one of the critical issues in pushover analysis (POA) when the influence of higher modes is evident. In terms of interstory drift, comparisons between the nonlinear time history analysis (NL-THA) and the pushover analysis (POA) were conducted for three typical RC frame buildings under a variety of ground motion levels. Eight typical earthquake inputs, including four earthquake records and four artificial earthquake waves, were employed as the input of NL-THA; five typical lateral load patterns were considered in POA. By means of modal participation factor, the higher mode effect in POA was quantified considering floor numbers and the ground motion intensity. Suggestions about load pattern selection in POA were provided when higher mode influence was found evident.
文摘This paper presents an effective means of analyzing the safety of a tunnel under dynamic loading in areas<span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">with seismic records. A particular case of the railway tunnel in the earthquake-prone regions of the escarpment seismic zone of Ethiopia was the specific focus area of the research. Probabilistic seismic hazard analysis (PSHA) and deaggregation have been conducted to determine the design earthquake required as an input for the dynamic analysis. The PSHA</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">performed by considering the operating design earthquake with conservative assumptions of the local geological features resulted in a peak ground acceleration of 0.36. Two pairs of design earthquake have been obtained from the deaggregation process, which were used to filter acceleration time histories for the selected design earthquake from the ground motion database of Pacific Earthquake Engineering Research Center. Finally, full dynamic analyses of the tunnel have been performed by applying the scaled acceleration time histories corresponding to the structure in the specific site. It was demonstrated how to prove the stability of the tunnel located in difficult ground conditions by performing plane strain analyses with the possible minimum computational efforts.</span>
文摘In the present study, finite element dynamic analysis or time history analysis of two-span beams subjected to asynchronous multi-support motions is carried out by using the moving support finite element. The elemental equation of the element is based on total displacements and is derived under the concept of the quasi-static displacement decomposition. The use of moving support element shows that the element is very simple and convenient to represent continuous beam moving, deforming and vibrating simultaneously due to support motions. The comparison between the numerical results and analytical solutions indicates that the FE result agrees with the analytical solution.
基金sponsored under the keyresearch project of social development of Zhejiang Province(2005C23075)
文摘It has been a period of time since the concept of scenario earthquake was proposed, but this concept has rarely been used in seismic safety evaluation in China since then. Meanwhile, because of the uncertainties of magnitudes-distances pairs, there is large arbitrariness while determining the envelope function of time histories in seismic hazard analysis. In this paper, we describe a method to control the envelope functions of the time histories by introducing the most-likely combinations of magnitude and distance of the scenario earthquakes based on a probabilistic method, revise the software of the ellipse model for seismic hazard analysis, and give a computation example.