Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emp...Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emphasis on structural durability and monitoring is required.This study focuses on the mechanical vibrations that occur in rotary drilling systems,which have a substantial impact on the structural integrity of drilling equipment.The study specifically investigates axial,torsional,and lateral vibrations,which might lead to negative consequences such as bit-bounce,chaotic whirling,and high-frequency stick-slip.These events not only hinder the efficiency of drilling but also lead to exhaustion and harm to the system’s components since they are difficult to be detected and controlled in real time.The study investigates the dynamic interactions of these vibrations,specifically in their high-frequency modes,usingfield data obtained from measurement while drilling.Thefindings have demonstrated the effect of strong coupling between the high-frequency modes of these vibrations on drilling sys-tem performance.The obtained results highlight the importance of considering the interconnected impacts of these vibrations when designing and implementing robust control systems.Therefore,integrating these compo-nents can increase the durability of drill bits and drill strings,as well as improve the ability to monitor and detect damage.Moreover,by exploiting thesefindings,the assessment of structural resilience in rotary drilling systems can be enhanced.Furthermore,the study demonstrates the capacity of structural health monitoring to improve the quality,dependability,and efficiency of rotary drilling systems in the petroleum industry.展开更多
As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal...As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal materials at various scales and dimensions.Conventional methods make it difficult to quantitatively describe the relationship between the regular characteristics and properties of metal material surfaces and interfaces.However,fractal analysis can be used to quantitatively describe the shape characteristics of metal materials and to establish the quantitative relationships between the shape characteristics and various properties of metal materials.From the perspective of two-dimensional planes and three-dimensional curved surfaces,this paper reviews the current research status of the fractal analysis of metal precipitate interfaces,metal grain boundary interfaces,metal-deposited film surfaces,metal fracture surfaces,metal machined surfaces,and metal wear surfaces.The relationship between the fractal dimensions and properties of metal material surfaces and interfaces is summarized.Starting from three perspectives of fractal analysis,namely,research scope,image acquisition methods,and calculation methods,this paper identifies the direction of research on fractal analysis of metal material surfaces and interfaces that need to be developed.It is believed that revealing the deep influence mechanism between the fractal dimensions and properties of metal material surfaces and interfaces will be the key research direction of the fractal analysis of metal materials in the future.展开更多
Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes...Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites,neglecting multilevel pathological analysis of the overall nervous system and target organs.This has led to restrictions on current therapeutic approaches.In this paper,we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective,covering the central nervous system,peripheral nervous system,and target organs.After peripheral nerve injury,the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves;changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord.The nerve will undergo axonal regeneration,activation of Schwann cells,inflammatory response,and vascular system regeneration at the injury site.Corresponding damage to target organs can occur,including skeletal muscle atrophy and sensory receptor disruption.We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury.The main current treatments are conducted passively and include physical factor rehabilitation,pharmacological treatments,cell-based therapies,and physical exercise.However,most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway.Therefore,we should further explore multilevel treatment options that produce effective,long-lasting results,perhaps requiring a combination of passive(traditional)and active(novel)treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery.展开更多
The relationship between the Hoek-Brown parameters and the mechanical response of circular tunnels is il-lustrated. Closed-form and approximate solutions are given for the extent of the plastic zone and the stress and...The relationship between the Hoek-Brown parameters and the mechanical response of circular tunnels is il-lustrated. Closed-form and approximate solutions are given for the extent of the plastic zone and the stress and dis-placement fields under axisymmetrical and asymmetric stress conditions. For the same rock masses and under axisym-metrical stress conditions,the radius of the plastic zone in terms of Hoek-Brown criterion is generally an approximation of the radius in terms of the Mohr-Coulomb criterion. The radius in terms of the Hoek-Brown criterion is larger under low stress conditions. For poor quality rock masses (GSI<25),measures (such as grouting,setting rock bolts,etc.) that improve the GSI of rock masses are effective in improving the stability of tunnels. It is not advisable to improve the sta-bility of the tunnels by providing a small support resistance p through shotcrete,except for very poor quality jointed rock masses. Without reference to the quality of the rock mass,the disturbance factor D should not less than 0.5. Meas-ures which disturb rock masses during tunnel construction should be taken carefully when the tunnel depth increases.展开更多
In this work, the finite element analysis of the elasto-plastic plate bending problems is carried out using transition rectangular plate elements. The shape functions of the transition plate elements are derived based...In this work, the finite element analysis of the elasto-plastic plate bending problems is carried out using transition rectangular plate elements. The shape functions of the transition plate elements are derived based on a practical rule. The transition plate elements are all quadrilateral and can be used to obtain efficient finite element models using minimum number of elements. The mesh convergence rates of the models including the transition elements are compared with the regular element models. To verify the developed elements, simple tests are demonstrated and various elasto-plastic problems are solved. Their results are compared with ANSYS results.展开更多
This paper establishes an anisotropic plastic material model to analyze the elasto-plastic behavior of masonry in plane stress state.Being an anisotropic material,masonry has different constitutive relation and fractu...This paper establishes an anisotropic plastic material model to analyze the elasto-plastic behavior of masonry in plane stress state.Being an anisotropic material,masonry has different constitutive relation and fracture energies along each orthotropic axes.Considering the unique material properties of masonry,a new yield criterion for masonry is proposed combining the Hill's yield criterion and the Rankine's yield criterion.The new yield criterion not only introduces compression friction coefficient of shear but also considers yield functions for independent stress state along two material axes of tension.To solve the involved nonlinear equations in numerical analysis,several nonlinear methods are implemented,including Newton-Raphson method for nonlinear equations and Implicit Euler backward mapping algorithm to update stresses.To verify the proposed material model of masonry,a series of tests are operated.The simulation results show that the new developed material model implements successfully.Compared with isotropic material model,the proposed model performs better in elasto-plastic analysis of masonry in plane stress state.The proposed anisotropic model is capable of simulating elasto-plastic behavior of masonry and can be used in related applications.展开更多
Employing an ideal elasto-plastic model,the typically used strength reduction method reduced the strength of all soil elements of a slope.Therefore,this method was called the global strength reduction method(GSRM).How...Employing an ideal elasto-plastic model,the typically used strength reduction method reduced the strength of all soil elements of a slope.Therefore,this method was called the global strength reduction method(GSRM).However,the deformation field obtained by GSRM could not reflect the real deformation of a slope when the slope became unstable.For most slopes,failure occurs once the strength of some regional soil is sufficiently weakened; thus,the local strength reduction method(LSRM)was proposed to analyze slope stability.In contrast with GSRM,LSRM only reduces the strength of local soil,while the strength of other soil remains unchanged.Therefore,deformation by LSRM is more reasonable than that by GSRM.In addition,the accuracy of the slope's deformation depends on the constitutive model to a large degree,and the variable-modulus elasto-plastic model was thus adopted.This constitutive model was an improvement of the Duncan–Chang model,which modified soil's deformation modulus according to stress level,and it thus better reflected the plastic feature of soil.Most importantly,the parameters of the variable-modulus elasto-plastic model could be determined through in-situ tests,and parameters determination by plate loading test and pressuremeter test were introduced.Therefore,it is easy to put this model into practice.Finally,LSRM and the variable-modulus elasto-plastic model were used to analyze Egongdai ancient landslide.Safety factor,deformation field,and optimal reinforcement measures for Egongdai ancient landslide were obtained based on the proposed method.展开更多
A meshless approach based on the moving least square method is developed for elasto-plasticity analysis,in which the incremental formulation is used.In this approach,the dis- placement shape functions are constructed ...A meshless approach based on the moving least square method is developed for elasto-plasticity analysis,in which the incremental formulation is used.In this approach,the dis- placement shape functions are constructed by using the moving least square approximation,and the discrete governing equations for elasto-plastic material are constructed with the direct collo- cation method.The boundary conditions are also imposed by collocation.The method established is a truly meshless one,as it does not need any mesh,either for the purpose of interpolation of the solution variables,or for the purpose of construction of the discrete equations.It is simply formu- lated and very efficient,and no post-processing procedure is required to compute the derivatives of the unknown variables,since the solution from this method based on the moving least square approximation is already smooth enough.Numerical examples are given to verify the accuracy of the meshless method proposed for elasto-plasticity analysis.展开更多
The present paper aims to establish a versatile strength theory suitable for elasto-plastic analysis of underground tunnel surrounding rock. In order to analyze the effects of intermediate principal stress and the roc...The present paper aims to establish a versatile strength theory suitable for elasto-plastic analysis of underground tunnel surrounding rock. In order to analyze the effects of intermediate principal stress and the rock properties on its deformation and failure of rock mass, the generalized nonlinear unified strength theory and elasto-plastic mechanics are used to deduce analytic solution of the radius and stress of tunnel plastic zone and the periphery displacement of tunnel under uniform ground stress field. The results show that: intermediate principal stress coefficient b has significant effect on the plastic range,the magnitude of stress and surrounding rock pressure. Then, the results are compared with the unified strength criterion solution and Mohr–Coulomb criterion solution, and concluded that the generalized nonlinear unified strength criterion is more applicable to elasto-plastic analysis of underground tunnel surrounding rock.展开更多
The rigid body limit equilibrium method(RBLEM) and finite element method(FEM) are two widely used approaches for rock slope's stability analysis currently. RBLEM introduced plethoric assumptions; while traditional...The rigid body limit equilibrium method(RBLEM) and finite element method(FEM) are two widely used approaches for rock slope's stability analysis currently. RBLEM introduced plethoric assumptions; while traditional FEM relied on artificial factors when determining factor of safety(FOS) and sliding surfaces. Based on the definition of structure instability that an elasto-plastic structure is not stable if it is unable to satisfy simultaneously equilibrium condition, kinematical admissibility and constitutive equations under given external loads, deformation reinforcement theory(DRT) is developed. With this theory, plastic complementary energy(PCE) can be used to evaluate the overall stability of rock slope, and the unbalanced force beyond the yield surface could be the identification of local failure. Compared with traditional slope stability analysis approaches, the PCE norm curve to strength reduced factor is introduced and the unbalanced force is applied to the determination of key sliding surfaces and required reinforcement. Typical and important issues in rock slope stability are tested in TFINE(a three-dimensional nonlinear finite element program), which is further applied to several representatives of high rock slope's stability evaluation and reinforcement engineering practice in southwest of China.展开更多
A thermal elasto-plastic asperity contact model is investigated, which takes into account the steady-state heat transfer and the asperity distortion due to thermal elasto-plastic deformations. A hard coating and a sof...A thermal elasto-plastic asperity contact model is investigated, which takes into account the steady-state heat transfer and the asperity distortion due to thermal elasto-plastic deformations. A hard coating and a soft coating are applied to study the correlations between contact area and contact pressure, average gap and contact pressure, coating thickness and contours of the contact stress distribution, etc. The effects of material properties, coating thickness, frictional coefficient, and the heat input combinations on the stress distribution are investigated and discussed. The frictional heat input increases the maximum value of yon Mises stress. Finally, the appropriate thickness of the hard coating is also discussed. To protect the substrate, one can choose hard coating and the thickness of that is suggested that can be hc=70 Rm.展开更多
Two modifications for the basic Barcelona model(BBM) are present. One is the replacement of the net stress by the average skeleton stress in unsaturated soil modeling, and the other is the adoption of an expression fo...Two modifications for the basic Barcelona model(BBM) are present. One is the replacement of the net stress by the average skeleton stress in unsaturated soil modeling, and the other is the adoption of an expression for the load-collapse(LC) yield surface that can match flexibly the normal compression lines at different suctions. The predictions of the modified BBM for the controlled-suction triaxial test on the unsaturated compacted clay are presented and compared with the experimental results. A good agreement between the predicted and experimental results demonstrates the reasonability of the modified BBM. On this basis, the coupled processes of groundwater flow and soil deformation in a homogeneous soil slope under a long heavy rainfall are simulated with the proposed elasto-plastic model. The numerical results reveal that the failure of a slope under rainfall infiltration is due to both the reduction of soil suction and the significant rise in groundwater table. The evolution of the displacements is greatly related to the change of suction. The maximum collapse deformation happens near the surface of slope where infiltrated rainwater can quickly reach. The results may provide a helpful reference for hazard assessment and control of rainfall-induced landslides.展开更多
The project of Xiaoxihu Yellow River Bridge in Lanzhou is chosen as partial cable-stayed bridge. To get the shear lag effect and anti-earthquake performance of the actual bridge under various loading conditions, organ...The project of Xiaoxihu Yellow River Bridge in Lanzhou is chosen as partial cable-stayed bridge. To get the shear lag effect and anti-earthquake performance of the actual bridge under various loading conditions, organic glass scaled model was adopted to have an experiment and a theory research at one time. The experiment result is the basically same as the theory calculation which proves the FEA method can well calculate shear lag effect and dynamical performance. As a result, because the bridge is located in a seismic area of 8 degree, an elasto-plastic seismic checking is performed by customized FEA program in this paper.展开更多
Bearing failure of composite laminate is very complicated due to the complexity of different failure mechanisms and their interactions. In this paper, an elasto-plastic damage model is built up to describe the process...Bearing failure of composite laminate is very complicated due to the complexity of different failure mechanisms and their interactions. In this paper, an elasto-plastic damage model is built up to describe the process of failure in composite laminates subjected to bearing load. Non-linear behavior of composite before failure is taken into consideration by using a modified Sun-Chen one parameter plasticity model. LaRC05 failure criteria are employed to predict the initiation of failure and the evolution of failure is described by a CDM based stiffness degradation model. Both theory and some application issues like parameter determination are discussed according to phenomenon of experiments. The model is firstly validated by several experiment results of unidirectional laminate and then applicated into the progressive analysis of bearing failure in pin-loaded multidirectional laminates, both intralaminar and interlaminar damage are taken into consideration. The result of finite element analysis is compared with experiment results;it shows good agreements in both mechanical response and progress of failure, so the model can be evaluated to be effective and practical in bearing failure analysis of composite laminates.展开更多
In order to predict the life of engineering structures, it is necessary to investigate the strain distribution in notched members. In gineral, the Uauschinger Effect of materials under cyclic loading is not negligible...In order to predict the life of engineering structures, it is necessary to investigate the strain distribution in notched members. In gineral, the Uauschinger Effect of materials under cyclic loading is not negligible, and so the anisolropic hardening model has been suggested. From the comparison between the calculated and experimental results in this paper, we can see that even the linear kinematic hardening model is quite suitable for strain analysis under cyclic loading.展开更多
The residual stress distribution of Hastelloy C corrosion-resistant alloy tubes after power spinning was simulated with the elasto-plastic finite element method combining with the element birth and death technique, th...The residual stress distribution of Hastelloy C corrosion-resistant alloy tubes after power spinning was simulated with the elasto-plastic finite element method combining with the element birth and death technique, the influences of spinning parameters on the distribution of the residual stress were investigated in detail, and the formation mechanism of residual stress during tube spinning was discussed. Based on the calculation of the residual stress, the reasons for annealing cracks on the spun tube during interpass heat treatment were explored. The simulation results and the characteristics of annealing cracks show that the circumferential residual tensile stress is a main factor to cause the annealing cracks.展开更多
The virtual displacement principle of elasto-plastic damage mechanics is presented. A linear complementary method for elasto-plastic damage problem is proposed by using FEM technique. This method is applicable to solv...The virtual displacement principle of elasto-plastic damage mechanics is presented. A linear complementary method for elasto-plastic damage problem is proposed by using FEM technique. This method is applicable to solving the damage structure analysis of hardened and softened nonlinear material.展开更多
The plastic node method is reformulated by the variational principle and is applied to elasto-plastic finite element analysis of tubular joints, eventually including the effect of internal and external gussets, stiffe...The plastic node method is reformulated by the variational principle and is applied to elasto-plastic finite element analysis of tubular joints, eventually including the effect of internal and external gussets, stiffener rings, etc., if necessary. Four different joints are studied here in detail for the elasto-plastic behavior, the strain at the hot spot, the strain concentration factor around the intersection line, and the propagation of the plastic region with loading up to collapse in order to determine the ultimate strength, safety factor, and development of the plastic field. The present results are in good agreement with the experimental results.展开更多
This paper presents a simplified numerical simulation tool for the elasto-plastic calculation of plane articulated truss by the finite element method (FEM) in MATLAB. The simplified approach consists of linearizing is...This paper presents a simplified numerical simulation tool for the elasto-plastic calculation of plane articulated truss by the finite element method (FEM) in MATLAB. The simplified approach consists of linearizing isotropic strain-hardening (to obtain a bilinear material law). The numerical implementation is built on the basis of the incremental and iterative FEM algorithms. The numerical resolution technique used is based on the projection methods of the modified Newton-Raphson solution. The MATLAB program is developed for the application of a 3-bar truss under monotonous quasi-static loading. Different values of the approximation error of the convergence criterion are used to study its impact on the quality of the algorithm. Numerical simulations have shown the reliability and quality of our simplified approach regardless of the approximation error.展开更多
A numerical method is proposed for the elasto-plasticity and pore-pressure coupled analysis on the pull- out behaviors of a plate anchor. The bounding-surface plasticity (BSP) model combined with Blot's consol- ida...A numerical method is proposed for the elasto-plasticity and pore-pressure coupled analysis on the pull- out behaviors of a plate anchor. The bounding-surface plasticity (BSP) model combined with Blot's consol- idation theory is employed to simulate the cyclic loading induced elasto-plastic deformation of the soil skeleton and the accompanying generation/dissipation of the excess pore water pressure. The suction force generated around the anchor due to the cyclic variation of the pore water pressure has much effect on the pullout capacity of the plate anchor. The calculated pullout capacity with the proposed method (i.e., the coupled analysis) gets lower than that with the conventional total stress analysis for the case of long-term sustained loading, but slightly higher for the case of short-term monotonic loading. The cyclic loading induced accumulation of pore water pressure may result in an obvious decrease of the stiffness of the soil-Plate anchor svstem.展开更多
文摘Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emphasis on structural durability and monitoring is required.This study focuses on the mechanical vibrations that occur in rotary drilling systems,which have a substantial impact on the structural integrity of drilling equipment.The study specifically investigates axial,torsional,and lateral vibrations,which might lead to negative consequences such as bit-bounce,chaotic whirling,and high-frequency stick-slip.These events not only hinder the efficiency of drilling but also lead to exhaustion and harm to the system’s components since they are difficult to be detected and controlled in real time.The study investigates the dynamic interactions of these vibrations,specifically in their high-frequency modes,usingfield data obtained from measurement while drilling.Thefindings have demonstrated the effect of strong coupling between the high-frequency modes of these vibrations on drilling sys-tem performance.The obtained results highlight the importance of considering the interconnected impacts of these vibrations when designing and implementing robust control systems.Therefore,integrating these compo-nents can increase the durability of drill bits and drill strings,as well as improve the ability to monitor and detect damage.Moreover,by exploiting thesefindings,the assessment of structural resilience in rotary drilling systems can be enhanced.Furthermore,the study demonstrates the capacity of structural health monitoring to improve the quality,dependability,and efficiency of rotary drilling systems in the petroleum industry.
基金financially supported by the National Key R&D Program of China(No.2022YFE0121300)the National Natural Science Foundation of China(No.52374376)the Introduction Plan for High-end Foreign Experts(No.G2023105001L)。
文摘As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal materials at various scales and dimensions.Conventional methods make it difficult to quantitatively describe the relationship between the regular characteristics and properties of metal material surfaces and interfaces.However,fractal analysis can be used to quantitatively describe the shape characteristics of metal materials and to establish the quantitative relationships between the shape characteristics and various properties of metal materials.From the perspective of two-dimensional planes and three-dimensional curved surfaces,this paper reviews the current research status of the fractal analysis of metal precipitate interfaces,metal grain boundary interfaces,metal-deposited film surfaces,metal fracture surfaces,metal machined surfaces,and metal wear surfaces.The relationship between the fractal dimensions and properties of metal material surfaces and interfaces is summarized.Starting from three perspectives of fractal analysis,namely,research scope,image acquisition methods,and calculation methods,this paper identifies the direction of research on fractal analysis of metal material surfaces and interfaces that need to be developed.It is believed that revealing the deep influence mechanism between the fractal dimensions and properties of metal material surfaces and interfaces will be the key research direction of the fractal analysis of metal materials in the future.
基金supported by grants from the Natural Science Foundation of Tianjin(General Program),Nos.23JCYBJC01390(to RL),22JCYBJC00220(to XC),and 22JCYBJC00210(to QL).
文摘Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites,neglecting multilevel pathological analysis of the overall nervous system and target organs.This has led to restrictions on current therapeutic approaches.In this paper,we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective,covering the central nervous system,peripheral nervous system,and target organs.After peripheral nerve injury,the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves;changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord.The nerve will undergo axonal regeneration,activation of Schwann cells,inflammatory response,and vascular system regeneration at the injury site.Corresponding damage to target organs can occur,including skeletal muscle atrophy and sensory receptor disruption.We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury.The main current treatments are conducted passively and include physical factor rehabilitation,pharmacological treatments,cell-based therapies,and physical exercise.However,most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway.Therefore,we should further explore multilevel treatment options that produce effective,long-lasting results,perhaps requiring a combination of passive(traditional)and active(novel)treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery.
基金Project 50639100 supported by the National Natural Science Foundation of China
文摘The relationship between the Hoek-Brown parameters and the mechanical response of circular tunnels is il-lustrated. Closed-form and approximate solutions are given for the extent of the plastic zone and the stress and dis-placement fields under axisymmetrical and asymmetric stress conditions. For the same rock masses and under axisym-metrical stress conditions,the radius of the plastic zone in terms of Hoek-Brown criterion is generally an approximation of the radius in terms of the Mohr-Coulomb criterion. The radius in terms of the Hoek-Brown criterion is larger under low stress conditions. For poor quality rock masses (GSI<25),measures (such as grouting,setting rock bolts,etc.) that improve the GSI of rock masses are effective in improving the stability of tunnels. It is not advisable to improve the sta-bility of the tunnels by providing a small support resistance p through shotcrete,except for very poor quality jointed rock masses. Without reference to the quality of the rock mass,the disturbance factor D should not less than 0.5. Meas-ures which disturb rock masses during tunnel construction should be taken carefully when the tunnel depth increases.
文摘In this work, the finite element analysis of the elasto-plastic plate bending problems is carried out using transition rectangular plate elements. The shape functions of the transition plate elements are derived based on a practical rule. The transition plate elements are all quadrilateral and can be used to obtain efficient finite element models using minimum number of elements. The mesh convergence rates of the models including the transition elements are compared with the regular element models. To verify the developed elements, simple tests are demonstrated and various elasto-plastic problems are solved. Their results are compared with ANSYS results.
基金Sponsored by Changjiang Scholars Program of China (Grant No.2009-37)PhD Programs Foundation of Ministry of Education of China (Grant No.20092302110046)Natural Science Foundation of Heilongjiang Province (Grant No.E200916)
文摘This paper establishes an anisotropic plastic material model to analyze the elasto-plastic behavior of masonry in plane stress state.Being an anisotropic material,masonry has different constitutive relation and fracture energies along each orthotropic axes.Considering the unique material properties of masonry,a new yield criterion for masonry is proposed combining the Hill's yield criterion and the Rankine's yield criterion.The new yield criterion not only introduces compression friction coefficient of shear but also considers yield functions for independent stress state along two material axes of tension.To solve the involved nonlinear equations in numerical analysis,several nonlinear methods are implemented,including Newton-Raphson method for nonlinear equations and Implicit Euler backward mapping algorithm to update stresses.To verify the proposed material model of masonry,a series of tests are operated.The simulation results show that the new developed material model implements successfully.Compared with isotropic material model,the proposed model performs better in elasto-plastic analysis of masonry in plane stress state.The proposed anisotropic model is capable of simulating elasto-plastic behavior of masonry and can be used in related applications.
基金Project([2005]205)supported by the Science and Technology Planning Project of Water Resources Department of Guangdong Province,ChinaProject(2012-7)supported by Guangdong Bureau of Highway Administration,ChinaProject(2012210020203)supported by the Fundamental Research Funds for the Central Universities,China
文摘Employing an ideal elasto-plastic model,the typically used strength reduction method reduced the strength of all soil elements of a slope.Therefore,this method was called the global strength reduction method(GSRM).However,the deformation field obtained by GSRM could not reflect the real deformation of a slope when the slope became unstable.For most slopes,failure occurs once the strength of some regional soil is sufficiently weakened; thus,the local strength reduction method(LSRM)was proposed to analyze slope stability.In contrast with GSRM,LSRM only reduces the strength of local soil,while the strength of other soil remains unchanged.Therefore,deformation by LSRM is more reasonable than that by GSRM.In addition,the accuracy of the slope's deformation depends on the constitutive model to a large degree,and the variable-modulus elasto-plastic model was thus adopted.This constitutive model was an improvement of the Duncan–Chang model,which modified soil's deformation modulus according to stress level,and it thus better reflected the plastic feature of soil.Most importantly,the parameters of the variable-modulus elasto-plastic model could be determined through in-situ tests,and parameters determination by plate loading test and pressuremeter test were introduced.Therefore,it is easy to put this model into practice.Finally,LSRM and the variable-modulus elasto-plastic model were used to analyze Egongdai ancient landslide.Safety factor,deformation field,and optimal reinforcement measures for Egongdai ancient landslide were obtained based on the proposed method.
基金Project supported by the National Natural Science Foundation of China(No.10172052).
文摘A meshless approach based on the moving least square method is developed for elasto-plasticity analysis,in which the incremental formulation is used.In this approach,the dis- placement shape functions are constructed by using the moving least square approximation,and the discrete governing equations for elasto-plastic material are constructed with the direct collo- cation method.The boundary conditions are also imposed by collocation.The method established is a truly meshless one,as it does not need any mesh,either for the purpose of interpolation of the solution variables,or for the purpose of construction of the discrete equations.It is simply formu- lated and very efficient,and no post-processing procedure is required to compute the derivatives of the unknown variables,since the solution from this method based on the moving least square approximation is already smooth enough.Numerical examples are given to verify the accuracy of the meshless method proposed for elasto-plasticity analysis.
文摘The present paper aims to establish a versatile strength theory suitable for elasto-plastic analysis of underground tunnel surrounding rock. In order to analyze the effects of intermediate principal stress and the rock properties on its deformation and failure of rock mass, the generalized nonlinear unified strength theory and elasto-plastic mechanics are used to deduce analytic solution of the radius and stress of tunnel plastic zone and the periphery displacement of tunnel under uniform ground stress field. The results show that: intermediate principal stress coefficient b has significant effect on the plastic range,the magnitude of stress and surrounding rock pressure. Then, the results are compared with the unified strength criterion solution and Mohr–Coulomb criterion solution, and concluded that the generalized nonlinear unified strength criterion is more applicable to elasto-plastic analysis of underground tunnel surrounding rock.
基金Project(51479097)supported by the National Natural Science Foundation of ChinaProject(2013-KY-2)supported by State Key Laboratory of Hydroscience and Hydraulic Engineering,China
文摘The rigid body limit equilibrium method(RBLEM) and finite element method(FEM) are two widely used approaches for rock slope's stability analysis currently. RBLEM introduced plethoric assumptions; while traditional FEM relied on artificial factors when determining factor of safety(FOS) and sliding surfaces. Based on the definition of structure instability that an elasto-plastic structure is not stable if it is unable to satisfy simultaneously equilibrium condition, kinematical admissibility and constitutive equations under given external loads, deformation reinforcement theory(DRT) is developed. With this theory, plastic complementary energy(PCE) can be used to evaluate the overall stability of rock slope, and the unbalanced force beyond the yield surface could be the identification of local failure. Compared with traditional slope stability analysis approaches, the PCE norm curve to strength reduced factor is introduced and the unbalanced force is applied to the determination of key sliding surfaces and required reinforcement. Typical and important issues in rock slope stability are tested in TFINE(a three-dimensional nonlinear finite element program), which is further applied to several representatives of high rock slope's stability evaluation and reinforcement engineering practice in southwest of China.
基金National Natural Science Foundation of China (No.50475146)Specialized Research Fund for the Doctoral Program of Higher Education of Ministry of Education,China (No.20030699035)+1 种基金Natural Science Foundation of Shaanxi Province,China (No.2004E_225,No.2005E_226)Northwestern Polytechnical University Foundation for Fundamental Research (NPU-FFR-20060500W018101)
文摘A thermal elasto-plastic asperity contact model is investigated, which takes into account the steady-state heat transfer and the asperity distortion due to thermal elasto-plastic deformations. A hard coating and a soft coating are applied to study the correlations between contact area and contact pressure, average gap and contact pressure, coating thickness and contours of the contact stress distribution, etc. The effects of material properties, coating thickness, frictional coefficient, and the heat input combinations on the stress distribution are investigated and discussed. The frictional heat input increases the maximum value of yon Mises stress. Finally, the appropriate thickness of the hard coating is also discussed. To protect the substrate, one can choose hard coating and the thickness of that is suggested that can be hc=70 Rm.
基金Project(1301015A)supported by the Post-doctoral Research Fund of Jiangsu Province,ChinaProject Funded by the Priority Academic Program of Jiangsu Higher Education Institution,China+1 种基金Project(2014M561566)supported by China Postdoctoral Science FoundationProject(YK913007)supported by Key Laboratory of Earth-Rock Dam Failure Mechanism and Safety Control Technologies,China
文摘Two modifications for the basic Barcelona model(BBM) are present. One is the replacement of the net stress by the average skeleton stress in unsaturated soil modeling, and the other is the adoption of an expression for the load-collapse(LC) yield surface that can match flexibly the normal compression lines at different suctions. The predictions of the modified BBM for the controlled-suction triaxial test on the unsaturated compacted clay are presented and compared with the experimental results. A good agreement between the predicted and experimental results demonstrates the reasonability of the modified BBM. On this basis, the coupled processes of groundwater flow and soil deformation in a homogeneous soil slope under a long heavy rainfall are simulated with the proposed elasto-plastic model. The numerical results reveal that the failure of a slope under rainfall infiltration is due to both the reduction of soil suction and the significant rise in groundwater table. The evolution of the displacements is greatly related to the change of suction. The maximum collapse deformation happens near the surface of slope where infiltrated rainwater can quickly reach. The results may provide a helpful reference for hazard assessment and control of rainfall-induced landslides.
文摘The project of Xiaoxihu Yellow River Bridge in Lanzhou is chosen as partial cable-stayed bridge. To get the shear lag effect and anti-earthquake performance of the actual bridge under various loading conditions, organic glass scaled model was adopted to have an experiment and a theory research at one time. The experiment result is the basically same as the theory calculation which proves the FEA method can well calculate shear lag effect and dynamical performance. As a result, because the bridge is located in a seismic area of 8 degree, an elasto-plastic seismic checking is performed by customized FEA program in this paper.
文摘Bearing failure of composite laminate is very complicated due to the complexity of different failure mechanisms and their interactions. In this paper, an elasto-plastic damage model is built up to describe the process of failure in composite laminates subjected to bearing load. Non-linear behavior of composite before failure is taken into consideration by using a modified Sun-Chen one parameter plasticity model. LaRC05 failure criteria are employed to predict the initiation of failure and the evolution of failure is described by a CDM based stiffness degradation model. Both theory and some application issues like parameter determination are discussed according to phenomenon of experiments. The model is firstly validated by several experiment results of unidirectional laminate and then applicated into the progressive analysis of bearing failure in pin-loaded multidirectional laminates, both intralaminar and interlaminar damage are taken into consideration. The result of finite element analysis is compared with experiment results;it shows good agreements in both mechanical response and progress of failure, so the model can be evaluated to be effective and practical in bearing failure analysis of composite laminates.
文摘In order to predict the life of engineering structures, it is necessary to investigate the strain distribution in notched members. In gineral, the Uauschinger Effect of materials under cyclic loading is not negligible, and so the anisolropic hardening model has been suggested. From the comparison between the calculated and experimental results in this paper, we can see that even the linear kinematic hardening model is quite suitable for strain analysis under cyclic loading.
基金the National Natural Science Foundation of China(No.59995444).
文摘The residual stress distribution of Hastelloy C corrosion-resistant alloy tubes after power spinning was simulated with the elasto-plastic finite element method combining with the element birth and death technique, the influences of spinning parameters on the distribution of the residual stress were investigated in detail, and the formation mechanism of residual stress during tube spinning was discussed. Based on the calculation of the residual stress, the reasons for annealing cracks on the spun tube during interpass heat treatment were explored. The simulation results and the characteristics of annealing cracks show that the circumferential residual tensile stress is a main factor to cause the annealing cracks.
文摘The virtual displacement principle of elasto-plastic damage mechanics is presented. A linear complementary method for elasto-plastic damage problem is proposed by using FEM technique. This method is applicable to solving the damage structure analysis of hardened and softened nonlinear material.
文摘The plastic node method is reformulated by the variational principle and is applied to elasto-plastic finite element analysis of tubular joints, eventually including the effect of internal and external gussets, stiffener rings, etc., if necessary. Four different joints are studied here in detail for the elasto-plastic behavior, the strain at the hot spot, the strain concentration factor around the intersection line, and the propagation of the plastic region with loading up to collapse in order to determine the ultimate strength, safety factor, and development of the plastic field. The present results are in good agreement with the experimental results.
文摘This paper presents a simplified numerical simulation tool for the elasto-plastic calculation of plane articulated truss by the finite element method (FEM) in MATLAB. The simplified approach consists of linearizing isotropic strain-hardening (to obtain a bilinear material law). The numerical implementation is built on the basis of the incremental and iterative FEM algorithms. The numerical resolution technique used is based on the projection methods of the modified Newton-Raphson solution. The MATLAB program is developed for the application of a 3-bar truss under monotonous quasi-static loading. Different values of the approximation error of the convergence criterion are used to study its impact on the quality of the algorithm. Numerical simulations have shown the reliability and quality of our simplified approach regardless of the approximation error.
基金supported by the National Natural Science Foundation of China(51309213)the 973 program of China (2014CB046200)
文摘A numerical method is proposed for the elasto-plasticity and pore-pressure coupled analysis on the pull- out behaviors of a plate anchor. The bounding-surface plasticity (BSP) model combined with Blot's consol- idation theory is employed to simulate the cyclic loading induced elasto-plastic deformation of the soil skeleton and the accompanying generation/dissipation of the excess pore water pressure. The suction force generated around the anchor due to the cyclic variation of the pore water pressure has much effect on the pullout capacity of the plate anchor. The calculated pullout capacity with the proposed method (i.e., the coupled analysis) gets lower than that with the conventional total stress analysis for the case of long-term sustained loading, but slightly higher for the case of short-term monotonic loading. The cyclic loading induced accumulation of pore water pressure may result in an obvious decrease of the stiffness of the soil-Plate anchor svstem.