Accelerated proximal gradient methods have recently been developed for solving quasi-static incremental problems of elastoplastic analysis with some different yield criteria.It has been demonstrated through numerical ...Accelerated proximal gradient methods have recently been developed for solving quasi-static incremental problems of elastoplastic analysis with some different yield criteria.It has been demonstrated through numerical experiments that these methods can outperform conventional optimization-based approaches in computational plasticity.However,in literature these algorithms are described individually for specific yield criteria,and hence there exists no guide for application of the algorithms to other yield criteria.This short paper presents a general form of algorithm design,independent of specific forms of yield criteria,that unifies the existing proximal gradient methods.Clear interpretation is also given to each step of the presented general algorithm so that each update rule is linked to the underlying physical laws in terms of mechanical quantities.展开更多
In this paper, the stress-strain curve of material is fitted by polygonal line composed of three lines. According to the theory of proportional loading in elastoplasticity, we simplify the complete stress-strain relat...In this paper, the stress-strain curve of material is fitted by polygonal line composed of three lines. According to the theory of proportional loading in elastoplasticity, we simplify the complete stress-strain relations, which are given by the increment theory of elastoplasticity. Thus, the finite element equation with the solution of displacement is derived. The assemblage elastoplastic stiffness matrix can be obtained by adding something to the elastic matrix, hence it will shorten the computing time. The determination of every loading increment follows the von Mises yield criteria. The iterative method is used in computation. It omits the redecomposition of the assemblage stiffness matrix and it will step further to shorten the computing time. Illustrations are given to the high-order element application departure from proportional loading, the computation of unloading fitting to the curve and the problem of load estimation.展开更多
Based on elastoplastic model, 2D and 3D finite element method (FEM) are used to calculate the stress and displacement distribution in the soft clay slope under gravity and uniform load at the slope top. Stability an...Based on elastoplastic model, 2D and 3D finite element method (FEM) are used to calculate the stress and displacement distribution in the soft clay slope under gravity and uniform load at the slope top. Stability analyses indicate that 3D boundary effect varies with the stress level of the slope. When the slope is stable, end effect of 3D space is not remarkable. When the stability decreases, end effect occurs; when the slope is at limit state, end effect reaches maximum. The energy causing slope failure spreads preferentially along y-z section, and when the failure resistance capability reaches the limit state, the energy can extend along x-axis direction. The 3D effect of the slope under uniform load on the top is related to the ratio of load influence width to slope height, and the effect is remarkable with the decrease of the ratio.展开更多
The stability of dams and their foundations is an important problem to which dam engineers have paid close attention over the years. This paper presented two methods to analyze the stability of a gravity dam and its f...The stability of dams and their foundations is an important problem to which dam engineers have paid close attention over the years. This paper presented two methods to analyze the stability of a gravity dam and its foundation. The direct analysis method was based on a rigid limit equilibrium method which regarded both dam and the rock foundation as undeformable rigid bodies. In this method, the safety factor of potential sliding surfaces was computed directly. The second method, the indirect analysis method, was based on elasto-plastic theory and employs nonlinear finite element method (FEM) in the analysis of stresses and deformation in the dam and its foundation. The determination of the safety degree of the structure was based on the convergence and abrupt the change criterion. The results obtained showed that structures' constituent material behavior played an active role in the failure of engineered structures in addition to the imposed load.展开更多
The equivalent stress fundamental solution for the elastoplastic dynamic plane strain problem is proposed to transform the virtual work in the third direction to the plane.Subsequently,based on Betti reciprocal theore...The equivalent stress fundamental solution for the elastoplastic dynamic plane strain problem is proposed to transform the virtual work in the third direction to the plane.Subsequently,based on Betti reciprocal theorem,by adopting the time dependent fundamental solutions in terms of displacement,traction and equivalent stress,the boundary integral equations for dynamic elastoplastic analysis for the plane strain problem are established.The establishment procedures for the displacement and the stress boundary integral equations,together with the stress equation at boundary points,are presented in details,while the standard discretization both in time and space under the frame of time domain boundary element method(TD-BEM)and the solution of the algebraic equations are also briefly stated.Two verification examples are presented from different viewpoints,for elastic and elastoplastic analysis,for 1-D and 2-D geometries,and for finite and infinite domains.The TD-BEM formulation for dynamic elastoplastic analysis is presented for the plane strain problem as an example,where the formulation is also applicable for the plane stress problem by properly transforming the elastic constants and adopting the corresponding fundamental solutions.展开更多
In Europe, computation of displacement demand for seismic assessment of existing buildings is essentially based on a simplified formulation of the N2 method as prescribed by Eurocode 8(EC8). However, a lack of accurac...In Europe, computation of displacement demand for seismic assessment of existing buildings is essentially based on a simplified formulation of the N2 method as prescribed by Eurocode 8(EC8). However, a lack of accuracy of the N2 method in certain conditions has been pointed out by several studies. This paper addresses the assessment of effectiveness of the N2 method in seismic displacement demand determination in non-linear domain. The objective of this work is to investigate the accuracy of the N2 method through comparison with displacement demands computed using non-linear timehistory analysis(NLTHA). Results show that the original N2 method may lead to overestimation or underestimation of displacement demand predictions. This may affect results of mechanical model-based assessment of seismic vulnerability at an urban scale. Hence, the second part of this paper addresses an improvement of the N2 method formula by empirical evaluation of NLTHA results based on EC8 ground-classes. This task is formulated as a mathematical programming problem in which coefficients are obtained by minimizing the overall discrepancy between NLTHA and modified formula results. Various settings of the mathematical programming problem have been solved using a global optimization metaheuristic. An extensive comparison between the original N2 method formulation and optimized formulae highlights benefits of the strategy.展开更多
In this work,a new methodology is presented to mainly solve the fluid–solid interaction(FSI)equation.This methodology combines the advantages of the Newmark precise integral method(NPIM)and the dual neural network(DN...In this work,a new methodology is presented to mainly solve the fluid–solid interaction(FSI)equation.This methodology combines the advantages of the Newmark precise integral method(NPIM)and the dual neural network(DNN)method.The NPIM is employed to modify the exponential matrix and loading vector based on the DNN integral method.This involves incorporating the basic assumption of the Newmark-βmethod into the dynamic equation and eliminating the acceleration term from the dynamic equilibrium equation.As a result,the equation is reduced to a first-order linear equation system.Subsequently,the PIM is applied to integrate the system step by step within the NPIM.The DNN method is adopted to solve the inhomogeneous term through fitting the integrand and the original function with a pair of neural networks,and the integral term is solved using the Newton–Leibniz formula.Numerical examples demonstrate that the proposed methodology significantly improves computing efficiency and provides sufficient precision compared to the DNN method.This is particularly evident when analyzing large-scale structures under blast loading conditions.展开更多
文摘Accelerated proximal gradient methods have recently been developed for solving quasi-static incremental problems of elastoplastic analysis with some different yield criteria.It has been demonstrated through numerical experiments that these methods can outperform conventional optimization-based approaches in computational plasticity.However,in literature these algorithms are described individually for specific yield criteria,and hence there exists no guide for application of the algorithms to other yield criteria.This short paper presents a general form of algorithm design,independent of specific forms of yield criteria,that unifies the existing proximal gradient methods.Clear interpretation is also given to each step of the presented general algorithm so that each update rule is linked to the underlying physical laws in terms of mechanical quantities.
文摘In this paper, the stress-strain curve of material is fitted by polygonal line composed of three lines. According to the theory of proportional loading in elastoplasticity, we simplify the complete stress-strain relations, which are given by the increment theory of elastoplasticity. Thus, the finite element equation with the solution of displacement is derived. The assemblage elastoplastic stiffness matrix can be obtained by adding something to the elastic matrix, hence it will shorten the computing time. The determination of every loading increment follows the von Mises yield criteria. The iterative method is used in computation. It omits the redecomposition of the assemblage stiffness matrix and it will step further to shorten the computing time. Illustrations are given to the high-order element application departure from proportional loading, the computation of unloading fitting to the curve and the problem of load estimation.
文摘Based on elastoplastic model, 2D and 3D finite element method (FEM) are used to calculate the stress and displacement distribution in the soft clay slope under gravity and uniform load at the slope top. Stability analyses indicate that 3D boundary effect varies with the stress level of the slope. When the slope is stable, end effect of 3D space is not remarkable. When the stability decreases, end effect occurs; when the slope is at limit state, end effect reaches maximum. The energy causing slope failure spreads preferentially along y-z section, and when the failure resistance capability reaches the limit state, the energy can extend along x-axis direction. The 3D effect of the slope under uniform load on the top is related to the ratio of load influence width to slope height, and the effect is remarkable with the decrease of the ratio.
文摘The stability of dams and their foundations is an important problem to which dam engineers have paid close attention over the years. This paper presented two methods to analyze the stability of a gravity dam and its foundation. The direct analysis method was based on a rigid limit equilibrium method which regarded both dam and the rock foundation as undeformable rigid bodies. In this method, the safety factor of potential sliding surfaces was computed directly. The second method, the indirect analysis method, was based on elasto-plastic theory and employs nonlinear finite element method (FEM) in the analysis of stresses and deformation in the dam and its foundation. The determination of the safety degree of the structure was based on the convergence and abrupt the change criterion. The results obtained showed that structures' constituent material behavior played an active role in the failure of engineered structures in addition to the imposed load.
基金The authors would like to acknowledge the financial support provided by Hebei Education Department(Grant QN2020135)the National Key R&D Program of China(Grants 2019YFC1511105 and 2019YFC1511104)the National Natural Science Foundation of China(Grant 51778193).
文摘The equivalent stress fundamental solution for the elastoplastic dynamic plane strain problem is proposed to transform the virtual work in the third direction to the plane.Subsequently,based on Betti reciprocal theorem,by adopting the time dependent fundamental solutions in terms of displacement,traction and equivalent stress,the boundary integral equations for dynamic elastoplastic analysis for the plane strain problem are established.The establishment procedures for the displacement and the stress boundary integral equations,together with the stress equation at boundary points,are presented in details,while the standard discretization both in time and space under the frame of time domain boundary element method(TD-BEM)and the solution of the algebraic equations are also briefly stated.Two verification examples are presented from different viewpoints,for elastic and elastoplastic analysis,for 1-D and 2-D geometries,and for finite and infinite domains.The TD-BEM formulation for dynamic elastoplastic analysis is presented for the plane strain problem as an example,where the formulation is also applicable for the plane stress problem by properly transforming the elastic constants and adopting the corresponding fundamental solutions.
文摘In Europe, computation of displacement demand for seismic assessment of existing buildings is essentially based on a simplified formulation of the N2 method as prescribed by Eurocode 8(EC8). However, a lack of accuracy of the N2 method in certain conditions has been pointed out by several studies. This paper addresses the assessment of effectiveness of the N2 method in seismic displacement demand determination in non-linear domain. The objective of this work is to investigate the accuracy of the N2 method through comparison with displacement demands computed using non-linear timehistory analysis(NLTHA). Results show that the original N2 method may lead to overestimation or underestimation of displacement demand predictions. This may affect results of mechanical model-based assessment of seismic vulnerability at an urban scale. Hence, the second part of this paper addresses an improvement of the N2 method formula by empirical evaluation of NLTHA results based on EC8 ground-classes. This task is formulated as a mathematical programming problem in which coefficients are obtained by minimizing the overall discrepancy between NLTHA and modified formula results. Various settings of the mathematical programming problem have been solved using a global optimization metaheuristic. An extensive comparison between the original N2 method formulation and optimized formulae highlights benefits of the strategy.
基金supported by the National Natural Science Foundation of China(Grant Nos.12072288,U2241274,and 12272319).
文摘In this work,a new methodology is presented to mainly solve the fluid–solid interaction(FSI)equation.This methodology combines the advantages of the Newmark precise integral method(NPIM)and the dual neural network(DNN)method.The NPIM is employed to modify the exponential matrix and loading vector based on the DNN integral method.This involves incorporating the basic assumption of the Newmark-βmethod into the dynamic equation and eliminating the acceleration term from the dynamic equilibrium equation.As a result,the equation is reduced to a first-order linear equation system.Subsequently,the PIM is applied to integrate the system step by step within the NPIM.The DNN method is adopted to solve the inhomogeneous term through fitting the integrand and the original function with a pair of neural networks,and the integral term is solved using the Newton–Leibniz formula.Numerical examples demonstrate that the proposed methodology significantly improves computing efficiency and provides sufficient precision compared to the DNN method.This is particularly evident when analyzing large-scale structures under blast loading conditions.