xNi/10NiO-NiFe2O4 (x=5, 10, 17) cermets and those doped with 1% BaO (mass fraction) were prepared by cold isostatic pressing at 200 MPa and sintering in nitrogen atmosphere at 1 473 K. The effects of BaO addition ...xNi/10NiO-NiFe2O4 (x=5, 10, 17) cermets and those doped with 1% BaO (mass fraction) were prepared by cold isostatic pressing at 200 MPa and sintering in nitrogen atmosphere at 1 473 K. The effects of BaO addition on relative density, microstructure and electric conductivity of cermets were investigated. The results show that relative densities ofxNi/10NiO-NiFe2O4 cermets (x=5, 10, 17) doped with 1% BaO at 1 473 K in nitrogen atmosphere are increased by 0.49%, 1.45% and 2.99% compared with those of the undoped BaO cermets, respectively. Moreover, the electric conductivities (21.98, 28.37 and 50.10 S/cm) of xNi/10NiO-NiFe2O4 cermets (x=5, 10, 17) doped with 1% BaO at 1 233 K are improved compared with those (18.70, 22.79 and 39.58 S/cm) of xNi/lONiO-NiFe2O4 cermets (x=5, 10, 17), respectively. This indicates that perhaps the addition of BaO or formation of BaFe204 and Ba2Fe2O5 has an active effect on electric conductivities ofxNi/10NiO-NiFe2O4 (x=5, 10, 17) cermets.展开更多
A critical challenge hindering the practical application of lithium–oxygen batteries(LOBs)is the inevitable problems associated with liquid electrolytes,such as evaporation and safety problems.Our study addresses the...A critical challenge hindering the practical application of lithium–oxygen batteries(LOBs)is the inevitable problems associated with liquid electrolytes,such as evaporation and safety problems.Our study addresses these problems by proposing a modified polyrotaxane(mPR)-based solid polymer electrolyte(SPE)design that simultaneously mitigates solvent-related problems and improves conductivity.mPR-SPE exhibits high ion conductivity(2.8×10^(−3)S cm^(−1)at 25℃)through aligned ion conduction pathways and provides electrode protection ability through hydrophobic chain dispersion.Integrating this mPR-SPE into solid-state LOBs resulted in stable potentials over 300 cycles.In situ Raman spectroscopy reveals the presence of an LiO_(2)intermediate alongside Li_(2)O_(2)during oxygen reactions.Ex situ X-ray diffraction confirm the ability of the SPE to hinder the permeation of oxygen and moisture,as demonstrated by the air permeability tests.The present study suggests that maintaining a low residual solvent while achieving high ionic conductivity is crucial for restricting the sub-reactions of solid-state LOBs.展开更多
Ce-doped Bi2O3 nanopowders were prepared by reverse titration chemical coprecipitation from Bi^3+and Ce^(4+)containing aqueous solution.Techniques of X-ray diffraction(XRD),transmission electron microscopic(TEM...Ce-doped Bi2O3 nanopowders were prepared by reverse titration chemical coprecipitation from Bi^3+and Ce^(4+)containing aqueous solution.Techniques of X-ray diffraction(XRD),transmission electron microscopic(TEM)and Fourier transform infrared spectroscopy(FTIR)were employed to characterize the as-synthesized materials.The XRD patterns indicated that the peaks can be easily indexed toβ-Bi2O3 and no diffraction peaks of Ce or other impurity phases were detected in the prepared samples.The calculated average crystalline size decreased from 31.72 to 11.96 nm when the Ce content increased from 1 wt%to 10 wt%.The morphology changed from flake-like into the spherical-like with increase in Ce content.The electric conductivity of Ce-doped Bi2O3 electrolyte was also investigated by two probe DC method.Conductivity analysis exhibited that the rate of conductivity increased with increasing Ce^2+ratio,when the Ce concentration was up to 5 wt%,the as-synthesized Ce-doped Bi2O3 electrolyte showed the maximum value of conductivity(0.295 S?cm^(–1)).展开更多
The searching about methods to connect the variables with each other to reach equations including multi variables. The dimensional analysis is a method to facilitate the solution of difficult mathematic equations and ...The searching about methods to connect the variables with each other to reach equations including multi variables. The dimensional analysis is a method to facilitate the solution of difficult mathematic equations and experimental formulas;therefore methods of simplifying the difficult equations and obtaining a new equation with different variables is needed. In this study will use 2 methods (statically with dimensionally analysis) to obtain electric conductivity of water of Euphrates river by multi parameters that are time (t), temperature (Te), density, viscosity, discharge and water depth in upstream of Alhindya barrage which located in Babylon governorate, Iraq during winter 2019. The equations were obtained for EC with Te and t by data were collected from Alhindya barrage office with R<sup>2</sup> = 0.999 and R<sup>2</sup> = 0.995 by statically ways. Dimension analysis was utilized via 2 stages. In first stage was obtained on equation of EC with respect to Te, water density (ρ) and dynamic viscosity (μ) with constant time, depth of water and discharge and we obtain on R<sup>2</sup> was 0.994 and R<sup>2</sup> = 0.986. In second stage was obtained formula of EC with respect to Te, water density (ρ), dynamic viscosity (μ), with variable time, depth of water and discharge with we obtain on R<sup>2</sup> = 0.945 and R<sup>2</sup> = 0.94. The result of research indicates that applying the dimension analysis to connect more than one variable with each other to find best solutions and best methods to facilitate the solving the equations. From dimension analysis gave a clear visualization of the association of several variables to give a result that helps measure the electrical conductivity of water in the absence of a water test device.展开更多
The physical expression of electrical conductivity of ternary glass can be obtained by the physical scattering theory of conducting ions by the defects in the glass. The scattering area of ion by the nucleus is given ...The physical expression of electrical conductivity of ternary glass can be obtained by the physical scattering theory of conducting ions by the defects in the glass. The scattering area of ion by the nucleus is given by the law of Rutherford in atomic physics. By this theory, the physical meaning of the microprocess of ionic conductivity of ternary glass is apparent.展开更多
In this paper, instead of with the more expensive Fourier Transform Infrared Spectrometer(FTIR) a new technique of Temperature Programmed Transient Response(TP-TR) has been used with gas chromatography. Therefore, the...In this paper, instead of with the more expensive Fourier Transform Infrared Spectrometer(FTIR) a new technique of Temperature Programmed Transient Response(TP-TR) has been used with gas chromatography. Therefore, the TP-TR will be applied more widespreadly than ever before. With the technique of TP-TR and electric conductivity, the study is on the reaction mechanism and the adsorption behavior of the reactants and products to the present catalyst Mo-V-Nb/Al_2O_3 in the reaction from ethane through oxydehydrogenation to ethylene as the product. By Range-Kutta-Gill and Margarat methods, the kinetic parameters of the reaction elementary steps (i.e. rate constants, active energies and frequency factors) have been evaluated. The mathematical treatment coincides with the experimental results.展开更多
Several 1-vinyl-3-alkylimidazolium halogens [VRIM]X, which are functional materials with ethylenic bonds, were synthesized using the microwave-assisted synthesis method. Fourier transform infrared spectroscopy and 1H ...Several 1-vinyl-3-alkylimidazolium halogens [VRIM]X, which are functional materials with ethylenic bonds, were synthesized using the microwave-assisted synthesis method. Fourier transform infrared spectroscopy and 1H nuclear magnetic resonance spectroscopy were carded out to analyze the resultant structures. The electrochemical properties and solubility of [VRIM]Br were investigated and discussed in detail. The temperature dependence of pure [VRIM]Br over a wide temperature range of 298.15-323.15 K fitted the Arrhanius equation well. At certain low concentrations, the electrical conductivity of the [VRIM]Br solution significantly increased with increasing solution concentration. The electrical conductivities of the [VRIM]Br observed in water, methanol, and ethanol showed the trend σwater〉 σmethanol 〉σethanol Conductometry showed that the critical miceUe concentrations of the bromines in water, methanol, and ethanol were 6.8-6.9 × 10-6, 1.4-1.5 × 10-5, and 1.9-2.0×10-5 mol.L-1, respectively; these results indicate that [VRIM]Br is an excellent surfactant. The solubility of [VRIM]X in common solvents was determined at 293.15 K, and results indicated that a decrease in solubility could be observed with decreasing dielectric constant of the solvent, elongation of the alkyl chain of the cation, and increasing anion size. Solubility parameters were also determined according to the Hildebrand-Scoff equation.展开更多
The effects of BaO addition on the phase composition,relative density and electric conductivity of xCu/10NiO-NiFe2O4 (x=5,10) cermets were studied,which were prepared with cold isostatic pressing-sintering process.The...The effects of BaO addition on the phase composition,relative density and electric conductivity of xCu/10NiO-NiFe2O4 (x=5,10) cermets were studied,which were prepared with cold isostatic pressing-sintering process.The results show that the relative densities of 5Cu/10NiO-NiFe2O4 cermet doped with 1% BaO (mass fraction) and 10Cu/10NiO-NiFe2O4 cermet doped with 1% BaO sintered at 1 473 K in nitrogen atmosphere,are increased by about 9.86% and 9.75% compared with the undoped BaO cermets,respectively.And the electric conductivities 22.79 S/cm of 5Cu/10NiO-NiFe2O4 cermets adding 1% BaO and 23.10 S/cm of 10Cu/10NiO-NiFe2O4 cermets adding 1% BaO are obtained,which are 2.21 times and 1.47 times of those of undoped samples,respectively.Moreover,the 10Cu/10NiO-NiFe2O4 cermets doped with 1% BaO have a maximum σ0 of 58.91 S/cm and electric conductivity of 23.10 S/cm at 1 233 K.Maybe low melting-point phases of BaFe2O4 and Ba2Fe2O5 have an excellent electric conductivity in xCu/10NiO-NiFe2O4 (x=5,10) cermets at 1 233 K.展开更多
Cu-Cu2O cermets were prepared via hot pressing(HP) or in situ reduction hot pressing (ISPHP). The results of electric conductivity tests show that the percolation threshold of the cermet, which is prepared by HP, ...Cu-Cu2O cermets were prepared via hot pressing(HP) or in situ reduction hot pressing (ISPHP). The results of electric conductivity tests show that the percolation threshold of the cermet, which is prepared by HP, is lower than that of cermet prepared by ISRHP. The electric conductivity and the percolation threshold depend on four influencing factors: the content, the size, the shape and the distribution of Cu phase. The electric conductivity decreases with the increase of Cu particle size, and decrease of the aspect ratio of Cu particle. The more even the Cu phase distribution, the higher the electric conductivity of the cermets.展开更多
Apatite-lanthanum silicate has attracted considerable interest in recent years due to its high oxide ion conductivity.In this paper,V-doped samples La10-xVx(SiO4) 6O3+x(0≤x≤1.5) were prepared by sol-gel method and t...Apatite-lanthanum silicate has attracted considerable interest in recent years due to its high oxide ion conductivity.In this paper,V-doped samples La10-xVx(SiO4) 6O3+x(0≤x≤1.5) were prepared by sol-gel method and the influences of V-dopant content on calcining temperature and conductivity were reported.The samples were characterized by thermal analysis(TG-DSC) ,X-ray diffraction(XRD) and scanning electron micrograph(SEM) . The apatite was obtained at 800°C,a relatively low temperature in comparison to 1500°C with the conventional solid-state method.The ceramic pellets sintered at 1200°C for 5 h showed a higher relative density than La9.33Si6O26 pellets sintered at 1400°C for 20 h.The conductivities of samples were measured by electrochemical impedance spectroscopy.The conductivity was improved with the increase of V-dopant content on La site.展开更多
The coordination nature of a number of substituted sodiumphenoxides to iron (Ⅲ) ion has been studied. The o-nitrosodiumphenoxide was found to have different coordination behaviour from that the sodium salts of sali...The coordination nature of a number of substituted sodiumphenoxides to iron (Ⅲ) ion has been studied. The o-nitrosodiumphenoxide was found to have different coordination behaviour from that the sodium salts of salicylic acid and methylsalicylate showed. The structure of the complexes, the number of the ligands being coordinated to the metal ion, has also been determined by titration, uv-vis spectroscopy, atomic absorption and the flame test. In addition, other sodium phenoxides were also involved in this study for comparison. An electric conductivity study on the resulting complexes was carried out and all complexes were found to be semiconductors.展开更多
Bibliographic reports on the electric conductivity of pure homoionic montmorillonite at low water content were analyzed in order to stress a general behavior of conductivity. At low water content, the conductivity is ...Bibliographic reports on the electric conductivity of pure homoionic montmorillonite at low water content were analyzed in order to stress a general behavior of conductivity. At low water content, the conductivity is attributed to a mechanism of charge transport involving protons due to the influence of the electric field of the exchangeable cations on water molecules at the solvation shell. Conductivity was analyzed in relation with the polarizing power (ionic potential) of the exchangeable cations and with the influence of the connectivity within samples. The general conclusion stressed is that the connectivity due to the association between 2:1 unit layers (clay fabric) is the main factor on the experimental or "macroscopic" electric conductivity of pure homoionic montmorillonite at low water content. Considerations on the experimental conditions of different bibliographic reports were also made. The conclusion and the considerations made on experimental conditions are a good starting point for future researches on electric conductivity ofhomoionic montmorillonite at low water content.展开更多
Electric potential near a wall for plasma with the surface produced negative ions with magnetic field increasing toward a wall is investigated analytically. The potential profile is derived analytically by using a pla...Electric potential near a wall for plasma with the surface produced negative ions with magnetic field increasing toward a wall is investigated analytically. The potential profile is derived analytically by using a plasma-sheath equation, where negative ions produced on the plasma grid (PG) surface are considered in addition to positive ions and electrons. The potential profile depends on the amount and the temperature of the surface produced negative ions and the profile of the magnetic field. The negative potential peak is formed in the sheath region near the PG surface for the case of strong surface production of negative ions or low temperature negative ions. As the increase rate of the magnetic field near the wall becomes large, the negative potential peak becomes small.展开更多
A simple, economical, and sensitive capillary electrophoresis (CE) method integrated with capacitively coupled contactless conductivity detection was developed for the determination of metal ions such as K<sup>+...A simple, economical, and sensitive capillary electrophoresis (CE) method integrated with capacitively coupled contactless conductivity detection was developed for the determination of metal ions such as K<sup>+</sup>, Na<sup>+</sup>, Mg<sup>2+</sup>, Sr<sup>2+</sup>, Ca<sup>2+</sup> in drinking water. 18-Crown-6 ether and Hexadecyltrimethylammonium Bromide (CTAB) were employed as complexing reagents. The effects of electrolyte additives, citric acid buffer solution, and other separation conditions of CE were comprehensively investigated and carefully optimized. The best results were obtained in a running buffer solution composed of citric acid (12 mM), 18-crown-6 ether (0.2 mM), and CTAB (0.015 mM) at pH 3.5. Under these conditions, a complete separation of five metal ions was successfully achieved in less than 12 min. The limits of detection for the optimal procedure were determined to be in the range of 0.02 - 0.2 mg·L<sup>-1</sup>. The repeatability with respect to migration times and peak areas, expressed as relative standard deviations, was better than 2.3% and 5.1%, respectively. Evaluation of the efficiency of the methodology indicated that it was reliable for the determination of metal ions in six different brands of drinking water samples.展开更多
Polyparaphenylene(PPP) is prepared by AlCl 3-CuCl 2 catalysts with benzene as the monomer and is doped by chemical method and N + ion implantation. The influences of the concentration, temperature and time of chemi...Polyparaphenylene(PPP) is prepared by AlCl 3-CuCl 2 catalysts with benzene as the monomer and is doped by chemical method and N + ion implantation. The influences of the concentration, temperature and time of chemical doping and the dose, energy and temperature of ion implantation, on PPP conductivity are investigated. The results showed that the conductivity of PPP can be improved 4~5 orders of magnitude by ion implantation and the conductivity of PPP can reach about 0.11 S·cm -1 by chemical doping. The comparison of stability of the material conductive behavior by using the two doping methods is presented. It shows that ion implantation is better than chemical doping in stabilizing the electric conductive behavior for the material.展开更多
In this paper the self-regeneration process of the mixed resins consisting of cationand anion ion exchangers in the electrolialyser of the packed bed is analyzed and anelectric regeneration method is put forward to su...In this paper the self-regeneration process of the mixed resins consisting of cationand anion ion exchangers in the electrolialyser of the packed bed is analyzed and anelectric regeneration method is put forward to supply the desalinated water by mixedbed The electric regeneration technology is a new one used for regeneration of theexhausted ion exchangers in the mixed bed instead of the traditional regeneratingprocess by using acid and abc liquor Electric energy is consumed to regenerat theion exchangers loaded by salts from water treatment without any chemicals- acid alkali. The advantage of the electric regeneration process edibited convenientoperation, no discharge any waste, and therefore no Polluted to the recehang waterbode and the environmental ground展开更多
The total conductivity of Li-biphenyl-1,2-dimethoxyethane solution(Li_xBp(DME)_(9.65), Bp = biphenyl, DME = 1,2-dimethoxyethane, x = 0.25, 0.50, 1.00, 1.50, 2.00) is measured by impedance spectroscopy at a tempe...The total conductivity of Li-biphenyl-1,2-dimethoxyethane solution(Li_xBp(DME)_(9.65), Bp = biphenyl, DME = 1,2-dimethoxyethane, x = 0.25, 0.50, 1.00, 1.50, 2.00) is measured by impedance spectroscopy at a temperature range from 0℃ to 40℃. The Li_(1.50)Bp(DME)_(9.65) has the highest total conductivity 10.7 m S/cm. The conductivity obeys Arrhenius law with the activation energy(E_(a(x=0.50))= 0.014 eV, E_(a(x=1.00))= 0.046 eV). The ionic conductivity and electronic conductivity of Li_xBp(DME)_(9.65) solutions are investigated at 20℃ using the isothermal transient ionic current(ITIC) technique with an ion-blocking stainless steal electrode. The ionic conductivity and electronic conductivity of Li_(1.00)Bp(DME)_(9.65) are measured as 4.5 mS/cm and 6.6 mS/cm, respectively. The Li_(1.00)Bp(DME)_(9.65) solution is tested as an anode material of half liquid lithium ion battery due to the coexistence of electronic conductivity and ionic conductivity. The lithium iron phosphate(LFP) and Li_(1.5)Al_(0.5)Ti_(1.5)(PO_4)_3(LATP) are chosen to be the counter electrode and electrolyte, respectively. The assembled cell is cycled in the voltage range of 2.2 V-3.75 V at a current density of 50 mA/g. The potential of Li_(1.00)Bp(DME)_(9.65) solution is about 0.3 V vs. Li~+/Li, which indicates the solution has a strong reducibility. The Li_(1.00)Bp(DME)_(9.65) solution is also used to prelithiate the anode material with low first efficiency, such as hard carbon, soft carbon and silicon.展开更多
Conductivity of glasses in the systems SiO2.PbO.RO, (where R=Ca, Sr or Ba) was investigated between room temperature and 530 K. The dependence of log resistivity as well as the activation energy on the PbO content has...Conductivity of glasses in the systems SiO2.PbO.RO, (where R=Ca, Sr or Ba) was investigated between room temperature and 530 K. The dependence of log resistivity as well as the activation energy on the PbO content has been studied. Based on the present experimental results, the possible different conduction mechanisms in such glasses are discussed. It was postulated that Pb2+ ions may represent the major charge carrying species in these glasses. This assumption was confirmed by the calculations of the mean distance between the interstitial Pb2+ ions and the effective center of the O2- ions in the glass networks. The variation in the values of the density and the molar volume with PbO content is also discussed in view of the obtained activation energies for the studied glass-systems.展开更多
A series of compounds, La 2/3- x Li 3 x MoO 4, were first prepared. Their structures are tetragonal scheelites with the cationic defects. The cell parameters a, c and values of c/a decrease with...A series of compounds, La 2/3- x Li 3 x MoO 4, were first prepared. Their structures are tetragonal scheelites with the cationic defects. The cell parameters a, c and values of c/a decrease with the increasing of the substitution amount (3 x ) of lithium ion. Cationic vacancies are getting more as Li + concentration is lower. The diffusion of lithium ion is predominant. The concentration of charge carriers increases with increasing the substitution amount (3 x ) of lithium ion, meanwhile, the concentration of cationic vacancies decreases. The conductivity approaches the best when the substitution amount (3 x ) of lithium ion is about 0.3. The conductivity of La 0.567 Li 0.3 MoO 4 is 6.5×10 -6 S·cm -1 at room temperature.展开更多
Materials Lao.8Sro.2Gao.83Mgo.17_xCox03_6 with x = 0, 0.05, 0.085, 0.10, and 0.15 are synthesized by laser rapid solidification. It is shown that the samples prepared by laser rapid solidification give rise to unique ...Materials Lao.8Sro.2Gao.83Mgo.17_xCox03_6 with x = 0, 0.05, 0.085, 0.10, and 0.15 are synthesized by laser rapid solidification. It is shown that the samples prepared by laser rapid solidification give rise to unique spear-like or leaf-like microstructures which are orderly arranged and densely packed. Their electrical properties each show a general depen dence of the Co content and the total conductivities of Lao.8Sro.2Gao.83Mgo.085Coo.08503_6 prepared by laser rapid solidification are measured to be 0.067, 0.124, and 0.202 S.cm-1 at 600, 700, and 800 ℃, respectively, which are much higher than by conventional solid state reactions. Moreover, the electrical conductivities each as a function of the oxy gen partial pressure are also measured. It is shown that the samples with the Co content values 〈 8.5 mol% each exhibit basically ionic conduction while those for Co content values 〉 10 mol % each show ionic mixed electronic conduction under oxygen partial pressures from 10-16 atm (1 atm = 1.01325 x 105 Pa) to 0.98 atm. The improved ionic conductivity of Lao.sSro.2Gao.83Mgo.085Coo.08503 prepared by laser rapid solidification compared with by solid state reactions is attributed to the unique microstructure of the sample generated during laser rapid solidification.展开更多
基金Project(2005CB623703) supported by the National Basic Research Program of ChinaProject(50721003) supported by the National Natural Science Fund for Innovation Group of ChinaProject(2008AA030501) supported by the National High-Tech Research and Development Program of China
文摘xNi/10NiO-NiFe2O4 (x=5, 10, 17) cermets and those doped with 1% BaO (mass fraction) were prepared by cold isostatic pressing at 200 MPa and sintering in nitrogen atmosphere at 1 473 K. The effects of BaO addition on relative density, microstructure and electric conductivity of cermets were investigated. The results show that relative densities ofxNi/10NiO-NiFe2O4 cermets (x=5, 10, 17) doped with 1% BaO at 1 473 K in nitrogen atmosphere are increased by 0.49%, 1.45% and 2.99% compared with those of the undoped BaO cermets, respectively. Moreover, the electric conductivities (21.98, 28.37 and 50.10 S/cm) of xNi/10NiO-NiFe2O4 cermets (x=5, 10, 17) doped with 1% BaO at 1 233 K are improved compared with those (18.70, 22.79 and 39.58 S/cm) of xNi/lONiO-NiFe2O4 cermets (x=5, 10, 17), respectively. This indicates that perhaps the addition of BaO or formation of BaFe204 and Ba2Fe2O5 has an active effect on electric conductivities ofxNi/10NiO-NiFe2O4 (x=5, 10, 17) cermets.
基金supported by a National Research Foundation of Korea(NRF)Grant funded by the Ministry of Science and ICT(2021R1A2C1014294,2022R1A2C3003319)the BK21 FOUR(Fostering Outstanding Universities for Research)through the National Research Foundation(NRF)of Korea.
文摘A critical challenge hindering the practical application of lithium–oxygen batteries(LOBs)is the inevitable problems associated with liquid electrolytes,such as evaporation and safety problems.Our study addresses these problems by proposing a modified polyrotaxane(mPR)-based solid polymer electrolyte(SPE)design that simultaneously mitigates solvent-related problems and improves conductivity.mPR-SPE exhibits high ion conductivity(2.8×10^(−3)S cm^(−1)at 25℃)through aligned ion conduction pathways and provides electrode protection ability through hydrophobic chain dispersion.Integrating this mPR-SPE into solid-state LOBs resulted in stable potentials over 300 cycles.In situ Raman spectroscopy reveals the presence of an LiO_(2)intermediate alongside Li_(2)O_(2)during oxygen reactions.Ex situ X-ray diffraction confirm the ability of the SPE to hinder the permeation of oxygen and moisture,as demonstrated by the air permeability tests.The present study suggests that maintaining a low residual solvent while achieving high ionic conductivity is crucial for restricting the sub-reactions of solid-state LOBs.
基金Funded by Changzhou Science and Technology Innovation Project(Nos.CC20140048,CC20130204)National Natural Science Foundation of China(No.51273027)2015 Research and Innovation Project for College Graduates of Jiangsu Province
文摘Ce-doped Bi2O3 nanopowders were prepared by reverse titration chemical coprecipitation from Bi^3+and Ce^(4+)containing aqueous solution.Techniques of X-ray diffraction(XRD),transmission electron microscopic(TEM)and Fourier transform infrared spectroscopy(FTIR)were employed to characterize the as-synthesized materials.The XRD patterns indicated that the peaks can be easily indexed toβ-Bi2O3 and no diffraction peaks of Ce or other impurity phases were detected in the prepared samples.The calculated average crystalline size decreased from 31.72 to 11.96 nm when the Ce content increased from 1 wt%to 10 wt%.The morphology changed from flake-like into the spherical-like with increase in Ce content.The electric conductivity of Ce-doped Bi2O3 electrolyte was also investigated by two probe DC method.Conductivity analysis exhibited that the rate of conductivity increased with increasing Ce^2+ratio,when the Ce concentration was up to 5 wt%,the as-synthesized Ce-doped Bi2O3 electrolyte showed the maximum value of conductivity(0.295 S?cm^(–1)).
文摘The searching about methods to connect the variables with each other to reach equations including multi variables. The dimensional analysis is a method to facilitate the solution of difficult mathematic equations and experimental formulas;therefore methods of simplifying the difficult equations and obtaining a new equation with different variables is needed. In this study will use 2 methods (statically with dimensionally analysis) to obtain electric conductivity of water of Euphrates river by multi parameters that are time (t), temperature (Te), density, viscosity, discharge and water depth in upstream of Alhindya barrage which located in Babylon governorate, Iraq during winter 2019. The equations were obtained for EC with Te and t by data were collected from Alhindya barrage office with R<sup>2</sup> = 0.999 and R<sup>2</sup> = 0.995 by statically ways. Dimension analysis was utilized via 2 stages. In first stage was obtained on equation of EC with respect to Te, water density (ρ) and dynamic viscosity (μ) with constant time, depth of water and discharge and we obtain on R<sup>2</sup> was 0.994 and R<sup>2</sup> = 0.986. In second stage was obtained formula of EC with respect to Te, water density (ρ), dynamic viscosity (μ), with variable time, depth of water and discharge with we obtain on R<sup>2</sup> = 0.945 and R<sup>2</sup> = 0.94. The result of research indicates that applying the dimension analysis to connect more than one variable with each other to find best solutions and best methods to facilitate the solving the equations. From dimension analysis gave a clear visualization of the association of several variables to give a result that helps measure the electrical conductivity of water in the absence of a water test device.
文摘The physical expression of electrical conductivity of ternary glass can be obtained by the physical scattering theory of conducting ions by the defects in the glass. The scattering area of ion by the nucleus is given by the law of Rutherford in atomic physics. By this theory, the physical meaning of the microprocess of ionic conductivity of ternary glass is apparent.
文摘In this paper, instead of with the more expensive Fourier Transform Infrared Spectrometer(FTIR) a new technique of Temperature Programmed Transient Response(TP-TR) has been used with gas chromatography. Therefore, the TP-TR will be applied more widespreadly than ever before. With the technique of TP-TR and electric conductivity, the study is on the reaction mechanism and the adsorption behavior of the reactants and products to the present catalyst Mo-V-Nb/Al_2O_3 in the reaction from ethane through oxydehydrogenation to ethylene as the product. By Range-Kutta-Gill and Margarat methods, the kinetic parameters of the reaction elementary steps (i.e. rate constants, active energies and frequency factors) have been evaluated. The mathematical treatment coincides with the experimental results.
基金Funded by the Special Funds of the National Natural Science Foundation of China(No.21174111)
文摘Several 1-vinyl-3-alkylimidazolium halogens [VRIM]X, which are functional materials with ethylenic bonds, were synthesized using the microwave-assisted synthesis method. Fourier transform infrared spectroscopy and 1H nuclear magnetic resonance spectroscopy were carded out to analyze the resultant structures. The electrochemical properties and solubility of [VRIM]Br were investigated and discussed in detail. The temperature dependence of pure [VRIM]Br over a wide temperature range of 298.15-323.15 K fitted the Arrhanius equation well. At certain low concentrations, the electrical conductivity of the [VRIM]Br solution significantly increased with increasing solution concentration. The electrical conductivities of the [VRIM]Br observed in water, methanol, and ethanol showed the trend σwater〉 σmethanol 〉σethanol Conductometry showed that the critical miceUe concentrations of the bromines in water, methanol, and ethanol were 6.8-6.9 × 10-6, 1.4-1.5 × 10-5, and 1.9-2.0×10-5 mol.L-1, respectively; these results indicate that [VRIM]Br is an excellent surfactant. The solubility of [VRIM]X in common solvents was determined at 293.15 K, and results indicated that a decrease in solubility could be observed with decreasing dielectric constant of the solvent, elongation of the alkyl chain of the cation, and increasing anion size. Solubility parameters were also determined according to the Hildebrand-Scoff equation.
基金Project(2005CB623703) supported by the National Basic Research Program of ChinaProject(50721003) supported by the National Natural Science Fund for Innovation Group of China
文摘The effects of BaO addition on the phase composition,relative density and electric conductivity of xCu/10NiO-NiFe2O4 (x=5,10) cermets were studied,which were prepared with cold isostatic pressing-sintering process.The results show that the relative densities of 5Cu/10NiO-NiFe2O4 cermet doped with 1% BaO (mass fraction) and 10Cu/10NiO-NiFe2O4 cermet doped with 1% BaO sintered at 1 473 K in nitrogen atmosphere,are increased by about 9.86% and 9.75% compared with the undoped BaO cermets,respectively.And the electric conductivities 22.79 S/cm of 5Cu/10NiO-NiFe2O4 cermets adding 1% BaO and 23.10 S/cm of 10Cu/10NiO-NiFe2O4 cermets adding 1% BaO are obtained,which are 2.21 times and 1.47 times of those of undoped samples,respectively.Moreover,the 10Cu/10NiO-NiFe2O4 cermets doped with 1% BaO have a maximum σ0 of 58.91 S/cm and electric conductivity of 23.10 S/cm at 1 233 K.Maybe low melting-point phases of BaFe2O4 and Ba2Fe2O5 have an excellent electric conductivity in xCu/10NiO-NiFe2O4 (x=5,10) cermets at 1 233 K.
文摘Cu-Cu2O cermets were prepared via hot pressing(HP) or in situ reduction hot pressing (ISPHP). The results of electric conductivity tests show that the percolation threshold of the cermet, which is prepared by HP, is lower than that of cermet prepared by ISRHP. The electric conductivity and the percolation threshold depend on four influencing factors: the content, the size, the shape and the distribution of Cu phase. The electric conductivity decreases with the increase of Cu particle size, and decrease of the aspect ratio of Cu particle. The more even the Cu phase distribution, the higher the electric conductivity of the cermets.
基金Supported by the Joint Funds of NSFC-Guangdong of China(U0834004)the Natural Science Foundation of Guangdong Province(06025657)
文摘Apatite-lanthanum silicate has attracted considerable interest in recent years due to its high oxide ion conductivity.In this paper,V-doped samples La10-xVx(SiO4) 6O3+x(0≤x≤1.5) were prepared by sol-gel method and the influences of V-dopant content on calcining temperature and conductivity were reported.The samples were characterized by thermal analysis(TG-DSC) ,X-ray diffraction(XRD) and scanning electron micrograph(SEM) . The apatite was obtained at 800°C,a relatively low temperature in comparison to 1500°C with the conventional solid-state method.The ceramic pellets sintered at 1200°C for 5 h showed a higher relative density than La9.33Si6O26 pellets sintered at 1400°C for 20 h.The conductivities of samples were measured by electrochemical impedance spectroscopy.The conductivity was improved with the increase of V-dopant content on La site.
文摘The coordination nature of a number of substituted sodiumphenoxides to iron (Ⅲ) ion has been studied. The o-nitrosodiumphenoxide was found to have different coordination behaviour from that the sodium salts of salicylic acid and methylsalicylate showed. The structure of the complexes, the number of the ligands being coordinated to the metal ion, has also been determined by titration, uv-vis spectroscopy, atomic absorption and the flame test. In addition, other sodium phenoxides were also involved in this study for comparison. An electric conductivity study on the resulting complexes was carried out and all complexes were found to be semiconductors.
文摘Bibliographic reports on the electric conductivity of pure homoionic montmorillonite at low water content were analyzed in order to stress a general behavior of conductivity. At low water content, the conductivity is attributed to a mechanism of charge transport involving protons due to the influence of the electric field of the exchangeable cations on water molecules at the solvation shell. Conductivity was analyzed in relation with the polarizing power (ionic potential) of the exchangeable cations and with the influence of the connectivity within samples. The general conclusion stressed is that the connectivity due to the association between 2:1 unit layers (clay fabric) is the main factor on the experimental or "macroscopic" electric conductivity of pure homoionic montmorillonite at low water content. Considerations on the experimental conditions of different bibliographic reports were also made. The conclusion and the considerations made on experimental conditions are a good starting point for future researches on electric conductivity ofhomoionic montmorillonite at low water content.
文摘Electric potential near a wall for plasma with the surface produced negative ions with magnetic field increasing toward a wall is investigated analytically. The potential profile is derived analytically by using a plasma-sheath equation, where negative ions produced on the plasma grid (PG) surface are considered in addition to positive ions and electrons. The potential profile depends on the amount and the temperature of the surface produced negative ions and the profile of the magnetic field. The negative potential peak is formed in the sheath region near the PG surface for the case of strong surface production of negative ions or low temperature negative ions. As the increase rate of the magnetic field near the wall becomes large, the negative potential peak becomes small.
文摘A simple, economical, and sensitive capillary electrophoresis (CE) method integrated with capacitively coupled contactless conductivity detection was developed for the determination of metal ions such as K<sup>+</sup>, Na<sup>+</sup>, Mg<sup>2+</sup>, Sr<sup>2+</sup>, Ca<sup>2+</sup> in drinking water. 18-Crown-6 ether and Hexadecyltrimethylammonium Bromide (CTAB) were employed as complexing reagents. The effects of electrolyte additives, citric acid buffer solution, and other separation conditions of CE were comprehensively investigated and carefully optimized. The best results were obtained in a running buffer solution composed of citric acid (12 mM), 18-crown-6 ether (0.2 mM), and CTAB (0.015 mM) at pH 3.5. Under these conditions, a complete separation of five metal ions was successfully achieved in less than 12 min. The limits of detection for the optimal procedure were determined to be in the range of 0.02 - 0.2 mg·L<sup>-1</sup>. The repeatability with respect to migration times and peak areas, expressed as relative standard deviations, was better than 2.3% and 5.1%, respectively. Evaluation of the efficiency of the methodology indicated that it was reliable for the determination of metal ions in six different brands of drinking water samples.
文摘Polyparaphenylene(PPP) is prepared by AlCl 3-CuCl 2 catalysts with benzene as the monomer and is doped by chemical method and N + ion implantation. The influences of the concentration, temperature and time of chemical doping and the dose, energy and temperature of ion implantation, on PPP conductivity are investigated. The results showed that the conductivity of PPP can be improved 4~5 orders of magnitude by ion implantation and the conductivity of PPP can reach about 0.11 S·cm -1 by chemical doping. The comparison of stability of the material conductive behavior by using the two doping methods is presented. It shows that ion implantation is better than chemical doping in stabilizing the electric conductive behavior for the material.
文摘In this paper the self-regeneration process of the mixed resins consisting of cationand anion ion exchangers in the electrolialyser of the packed bed is analyzed and anelectric regeneration method is put forward to supply the desalinated water by mixedbed The electric regeneration technology is a new one used for regeneration of theexhausted ion exchangers in the mixed bed instead of the traditional regeneratingprocess by using acid and abc liquor Electric energy is consumed to regenerat theion exchangers loaded by salts from water treatment without any chemicals- acid alkali. The advantage of the electric regeneration process edibited convenientoperation, no discharge any waste, and therefore no Polluted to the recehang waterbode and the environmental ground
基金Project supported by the National Natural Science Foundation of China(Grant No.52315206)the Ministry of Science and Technology of China(Grant No.2016YFB0100100)the Beijing Municipal Science and Technology Commission,China(Grant No.D151100003115003)
文摘The total conductivity of Li-biphenyl-1,2-dimethoxyethane solution(Li_xBp(DME)_(9.65), Bp = biphenyl, DME = 1,2-dimethoxyethane, x = 0.25, 0.50, 1.00, 1.50, 2.00) is measured by impedance spectroscopy at a temperature range from 0℃ to 40℃. The Li_(1.50)Bp(DME)_(9.65) has the highest total conductivity 10.7 m S/cm. The conductivity obeys Arrhenius law with the activation energy(E_(a(x=0.50))= 0.014 eV, E_(a(x=1.00))= 0.046 eV). The ionic conductivity and electronic conductivity of Li_xBp(DME)_(9.65) solutions are investigated at 20℃ using the isothermal transient ionic current(ITIC) technique with an ion-blocking stainless steal electrode. The ionic conductivity and electronic conductivity of Li_(1.00)Bp(DME)_(9.65) are measured as 4.5 mS/cm and 6.6 mS/cm, respectively. The Li_(1.00)Bp(DME)_(9.65) solution is tested as an anode material of half liquid lithium ion battery due to the coexistence of electronic conductivity and ionic conductivity. The lithium iron phosphate(LFP) and Li_(1.5)Al_(0.5)Ti_(1.5)(PO_4)_3(LATP) are chosen to be the counter electrode and electrolyte, respectively. The assembled cell is cycled in the voltage range of 2.2 V-3.75 V at a current density of 50 mA/g. The potential of Li_(1.00)Bp(DME)_(9.65) solution is about 0.3 V vs. Li~+/Li, which indicates the solution has a strong reducibility. The Li_(1.00)Bp(DME)_(9.65) solution is also used to prelithiate the anode material with low first efficiency, such as hard carbon, soft carbon and silicon.
文摘Conductivity of glasses in the systems SiO2.PbO.RO, (where R=Ca, Sr or Ba) was investigated between room temperature and 530 K. The dependence of log resistivity as well as the activation energy on the PbO content has been studied. Based on the present experimental results, the possible different conduction mechanisms in such glasses are discussed. It was postulated that Pb2+ ions may represent the major charge carrying species in these glasses. This assumption was confirmed by the calculations of the mean distance between the interstitial Pb2+ ions and the effective center of the O2- ions in the glass networks. The variation in the values of the density and the molar volume with PbO content is also discussed in view of the obtained activation energies for the studied glass-systems.
文摘A series of compounds, La 2/3- x Li 3 x MoO 4, were first prepared. Their structures are tetragonal scheelites with the cationic defects. The cell parameters a, c and values of c/a decrease with the increasing of the substitution amount (3 x ) of lithium ion. Cationic vacancies are getting more as Li + concentration is lower. The diffusion of lithium ion is predominant. The concentration of charge carriers increases with increasing the substitution amount (3 x ) of lithium ion, meanwhile, the concentration of cationic vacancies decreases. The conductivity approaches the best when the substitution amount (3 x ) of lithium ion is about 0.3. The conductivity of La 0.567 Li 0.3 MoO 4 is 6.5×10 -6 S·cm -1 at room temperature.
基金supported by the National Natural Science Foundation of China(Grant No.10974183)the Fund for Science and Technology Innovation Team of Zhengzhou City,China(Grant No.2011-3)the Postdoctoral Research Sponsorship in Henan Province,China(Grant No.2011002)
文摘Materials Lao.8Sro.2Gao.83Mgo.17_xCox03_6 with x = 0, 0.05, 0.085, 0.10, and 0.15 are synthesized by laser rapid solidification. It is shown that the samples prepared by laser rapid solidification give rise to unique spear-like or leaf-like microstructures which are orderly arranged and densely packed. Their electrical properties each show a general depen dence of the Co content and the total conductivities of Lao.8Sro.2Gao.83Mgo.085Coo.08503_6 prepared by laser rapid solidification are measured to be 0.067, 0.124, and 0.202 S.cm-1 at 600, 700, and 800 ℃, respectively, which are much higher than by conventional solid state reactions. Moreover, the electrical conductivities each as a function of the oxy gen partial pressure are also measured. It is shown that the samples with the Co content values 〈 8.5 mol% each exhibit basically ionic conduction while those for Co content values 〉 10 mol % each show ionic mixed electronic conduction under oxygen partial pressures from 10-16 atm (1 atm = 1.01325 x 105 Pa) to 0.98 atm. The improved ionic conductivity of Lao.sSro.2Gao.83Mgo.085Coo.08503 prepared by laser rapid solidification compared with by solid state reactions is attributed to the unique microstructure of the sample generated during laser rapid solidification.