The adsorption capacity and absorption rate for electrolyte onto activated carbon are important parameters used to characterize activated carbon electric double-layer capacitor electrodes. In this paper the pore struc...The adsorption capacity and absorption rate for electrolyte onto activated carbon are important parameters used to characterize activated carbon electric double-layer capacitor electrodes. In this paper the pore structure of typical commercial activated carbons, and various Mn-doped activated carbons prepared on a laboratory scale, are described. The pore structure was character-ized by N2 adsorption/desorption isotherms. Isotherms for K+ adsorption onto these activated carbons from the aqueous phase were also obtained. The experimental, equilibrium K+ adsorption data were fitted to the Langmuir, Freundlich or Temkin equations. Adsorption of K+ onto the activated carbons was measured and plotted as a function of time. The adsorption kinetic data were modeled by either pseudo-first or pseudo-second order equations. The Elvoich equation, a liquid film diffusion and an intra-particle diffusion model were used to fit the kinetic data. The results indicate that the adsorption of K+ onto activated carbon is influenced by many factors including pore size distribution, specific surface area and the surface chemistry of the activated carbons. The Temkin equation best describes the equilibrium adsorption data. The pseudo-second order model exactly describes the whole adsorption process, which is controlled by both liquid film and intra-particle diffusion.展开更多
In this study, carbon aerogels were derived via the pyrolysis of resorcinol-formaldehyde (RF) aerogels, which were cost-effectively manufactured from RF wet gels by an ambient drying technique instead of conventional ...In this study, carbon aerogels were derived via the pyrolysis of resorcinol-formaldehyde (RF) aerogels, which were cost-effectively manufactured from RF wet gels by an ambient drying technique instead of conventional supercritical drying. By varying the R/C ratio (molar ratio of resorcinol to catalyst), mesoporous carbon aerogels with high specific surface area were prepared successfully and further investigated as electrode materials for electric double-layer capacitors (EDLCs). The textural properties of carbon aerogels obtained were characterized by nitrogen adsorption/desorption analysis and SEM. The electrochemical performances of carbon aerogels were investigated by impedance spectroscopy, galvanostatic charge/discharge and cyclic voltammetry methods. The results show that BET surface area and specific capacitance increase with R/C ratio, the maximum values of 727 m2·g-1 and 132 F·g-1 are achieved at R/C ratio will of 300. Increasing R/C ratio increase the average pore size of carbon aerogel electrode, which has improved the rate capability. Furthermore, EDLC with carbon aerogel electrodes has an excellent stability at large discharge current and long cycle life.展开更多
A spiro-type quaternary ammonium salt, spiro-(1,1′)-bipyrrolidinium tetrafluoroborate(SBP-BF4) was successfully prepared by an economical and efficient three-step process comprising the cyclization reaction of 1,4-di...A spiro-type quaternary ammonium salt, spiro-(1,1′)-bipyrrolidinium tetrafluoroborate(SBP-BF4) was successfully prepared by an economical and efficient three-step process comprising the cyclization reaction of 1,4-dibromobutane and pyrrolidine, and subsequent ion exchange pathway with KOH followed by neutralization reaction via HBF4 in the system of ethanol solution. 1H NMR, 13 C NMR, FI-IR and XPS analyses showed the structure of SBP-BF4. The as-obtained SBP-BF4 was dissolved in AN and used as the electrolyte for supercapacitor. Electrochemical measurements demonstrate that, compared with commercial electrolyte TEMA-BF4/AN, SBP-BF4/AN exhibits high ionic conductivity, lower resistance and improved cycling performance, which is due to its smaller ion size and stable symmetry structure.展开更多
To investigate the influence of expansion pretreatment for materials on carbon structure, activated carbons (ACs) were prepared from corncob with/without expansion pretreatment by KOH activation, the structure prope...To investigate the influence of expansion pretreatment for materials on carbon structure, activated carbons (ACs) were prepared from corncob with/without expansion pretreatment by KOH activation, the structure properties of which were determined based on N2 adsorption isotherm at 77 K. The results show that the expansion pretreatment for corncobs is beneficial to the preparation of ACs with high surface area. The specific surface area of the AC derived from corncob with expansion pretreatment (AC-1) is 32.5% larger than that without expansion pretreatment (AC-2). Furthermore, to probe the potential application of corncob-based ACs in electric double-layer capacitor (EDLC), the prepared ACs were used as electrode materials to assemble EDLC, and its electrochemical performance was investi- gated. The results indicate that the specific capacitance of AC-I is 276 F/g at 50 mA/g, which increases by 27% com- pared with that of AC-2 (217 F/g). As electrode materials, AC-1 presents a better electrochemical performance than AC-2, including a higher voltage maintenance ratio and a lower leakage current.展开更多
Activated carbons(ACs) with a wide range of surface areas were made from petroleum coke by means of KOH activation. The electrochemical characterization was carried out for several activated carbons used as polarizabl...Activated carbons(ACs) with a wide range of surface areas were made from petroleum coke by means of KOH activation. The electrochemical characterization was carried out for several activated carbons used as polarizable electrodes of electric double-layer capacitors(EDLCs) in an aqueous electrolytic solution. The porous structures and electrochemical double-layer capacitance of the activated carbons were investigated by virtue of nitrogen gas adsorption and constant current cycling(CCC) methods. The relationship among the surface area, pore volume of the activated carbons and specific double-layer capacitance was discussed. It was found that the specific capacitance of ACs increased linearly with the increase of surface area. The presence of mesopores in the activated carbons with very high surface area(>2000 m\+2/g) was not very effective for them to be used as EDLCs. The influence of chemical characteristics of the activated carbons on the double layer formation could be considered to be negligible.展开更多
In recent years, application of carbon-based nano material to electrode material has been paid attention, however, due to its higher cost, it would be difficult to put it into practical use. Then, we have proposed to ...In recent years, application of carbon-based nano material to electrode material has been paid attention, however, due to its higher cost, it would be difficult to put it into practical use. Then, we have proposed to make nano carbon fiber with lower production cost. The purpose of our research was, to apply our nano carbon fiber to electrical double-layer capacitor electrode. We used cotton candy method to make nano fiber, and applied microwave heating for carbonization. By applying nano carbon fiber to electrical double-layer capacitor electrode, we got results that thicker electrode containing nano carbon fiber leads to lower resistance value, compared with electrode without containing nano carbon fiber. From this result, it was indicated that by containing nano carbon fiber, the electric bypass was formed in the electrode.展开更多
Electrolytic conductivity, viscosity and electrochemical behavior were investigated for organic electrolytes based on PC(Propylene carbonate), MAN(Methoxy acetonitrile) and GBL(γ-Butyrolactone) solvents. It was...Electrolytic conductivity, viscosity and electrochemical behavior were investigated for organic electrolytes based on PC(Propylene carbonate), MAN(Methoxy acetonitrile) and GBL(γ-Butyrolactone) solvents. It was found that 1 mol/L Et4NBF4-MAN had the highest conductivity, lowest viscosity and acceptable potential window. The specific capacitance and energy density obtained from the capacitor using 1 mol/L Et4NBF4-MAN as electrolyte were the highest among all the tested electrolytes.(1 mol/L) Et4NBF4-GBL also seemed promising to be used in electric double-layer capacitor (EDLCs).展开更多
For delivering the nanoscaled extraordinary characteristics in macroscopical bulk,it is essential to integrate two-dimensional nanosheets into threedimensional(3D)porous monoliths,alternatively called as 3D architectu...For delivering the nanoscaled extraordinary characteristics in macroscopical bulk,it is essential to integrate two-dimensional nanosheets into threedimensional(3D)porous monoliths,alternatively called as 3D architectures,3D networks,or aerogels.The intersupported structure of porous monolithic 3D graphene(3DG)can prevent aggregation or restacking of graphene individuals,and the interconnected sp^(2) network of 3DG not only can provide the highway for the transport of electron/phonon but also can present continual cavities/channels for mass transfer.This review summarizes the synthesis methodology of 3DG porous monoliths and highlights the application for electric double-layer capacitors.Present challenges and future prospects about the manufacture and application of 3DG are also discussed.展开更多
Activated carbon(AC)in organic electrolytebased electric double-layer capacitors(EDLCs)usually suffers from low specific capacitance.Most studies on AC focus on improving its surface area and optimizing pore structure...Activated carbon(AC)in organic electrolytebased electric double-layer capacitors(EDLCs)usually suffers from low specific capacitance.Most studies on AC focus on improving its surface area and optimizing pore structures to enhance its electrochemical performance in EDLCs.Unfortunately,the interfacial microenvironment,which is composed of nanoporous carbon and the organic electrolyte confined in it,is always ignored.Herein,a simple and powerful strategy to create AC with an ionophobic surface is proposed to address the poor efficiency of the electric doublelayer process.The polar C±F bonds formed in the AC material are characterized through near-edge X-ray absorption fine structure and X-ray photoelectron spectroscopy.The ionophobic characteristic of YP-F60 s in an organic electrolyte is extensively studied via contact angle measurements and smallangle X-ray scattering spectroscopy.An EDLC constructed with YP-F60 s as the electrode and 1 mol L^(-1) tetraethylammonium tetrafluoroborate/propylene carbonate as the electrolyte demonstrates high specific capacitance,low internal resistance,and excellent cycling stability.Our results successfully demonstrate the importance of the interfacial microenvironment of AC and its confined electrolyte to the electrochemical performance of EDLCs.Our work also offers new perspectives on the use of the CF;plasma technique to fabricate low-cost superior carbon for EDLCs.展开更多
The space-charge distributions of electric double-layer capacitors (EDLCs), which are energy storage devices, were examined with the pulsed electroacoustic (PEA) method. It was found that the experimental results ...The space-charge distributions of electric double-layer capacitors (EDLCs), which are energy storage devices, were examined with the pulsed electroacoustic (PEA) method. It was found that the experimental results could be influenced by the reflection and penetration of sound waves when the space-charge dis- tributions of EDLCs were measured with the PEA method. This is because EDLCs have a five-layer structure consisting of three materials (aluminum, cellulose, and activated carbon). We calculated the reflection wave components that influenced the charge density through the acoustic impedance and the relative permittivity of the materials. In this way, we found that the changes in the space-charge distributions of EDLCs and their charge characteristics corresponded closely. We determined that measuring the space- charge distributions with the PEA method was effective for evaluating the charge accumulation of EDLCs. In this study, a polarized electrode was prepared for use in EDLCs. The ratio of the surface area to the average pore diameter of the polarized electrode was measured with the nitrogen adsorption method at 77 K. The relationship between the ratio of the surface area to the average pore size and the space-charge distributions of EDLCs is also discussed in this paper.展开更多
To understand the mesoscopic mechanism of clayey soil in view of macroscopic behavior, it is essential to quantitatively calculate the electric double-layer repulsion between arbitrarily inclined clay particles.Howeve...To understand the mesoscopic mechanism of clayey soil in view of macroscopic behavior, it is essential to quantitatively calculate the electric double-layer repulsion between arbitrarily inclined clay particles.However, suitable calculation methods with high efficiency and accuracy are still rare at present in literature. Based on a great number of numerical calculations of the repulsion between two inclined platy clay particles, explicit empirical formulae for estimating electric double-layer repulsion between clay particles are put forward. Comparison between the empirical solutions and corresponding numerical results shows that the proposed formulae have a reasonable accuracy, and application of the presented formula is easy and efficient.展开更多
Electric double-layer field effect experiments were performed on ultrathin films of La0.325Pr0.3Ca0.375MnO3, which is noted for its micrometer-scale phase separation. A clear change of resistance up to 220% was observ...Electric double-layer field effect experiments were performed on ultrathin films of La0.325Pr0.3Ca0.375MnO3, which is noted for its micrometer-scale phase separation. A clear change of resistance up to 220% was observed and the characteristic metal-insulator transition temperature Tp was also shifted. The changes of both the resistance and Tp, suggest that the electric field induced not only tuning of the carrier density but also rebalancing of the phase separation states. The change of the charge-ordered insulating phase fraction was estimated to be temperature dependent, and a maximum of 16% was achieved in the phase separation regime. This tuning effect was partially irreversible, which might be due to an oxygen vacancy migration that is driven by the huge applied electric field.展开更多
Multi-walled carbon nanombes with homogeneous diameters (40 - 60 nm), produced by chemical vapor deposition of hydrocarbon gas, are purified by nitric acids. Infrared and Raman studies indicate that oxygen containin...Multi-walled carbon nanombes with homogeneous diameters (40 - 60 nm), produced by chemical vapor deposition of hydrocarbon gas, are purified by nitric acids. Infrared and Raman studies indicate that oxygen containing surface groups, which are predominately carboxylic, phenolic and lactonic groups, are introduced into purified carbon nanotubes. Then three kinds of block-form porous tablets of carbon nanotubes are fabricated as electrodes in electrochemical double-layer capacitors. Using mounded mixture comprising carbon nanotubes and binder powders provides these tablets. Comparison of the effect of different processing on the structural performance of the capacitors is specifically investigated. Using chemically treated electrodes, electrochemical double-layer capacitors with a specific capacitance of about 33 F/g are obtained with 38 wt % H2SO4 as the electrolyte.展开更多
Mesoporous polyethylene glycol-resorcinol and formaldehyde(PEG-RF) carbon xerogels were prepared by a new polymer blend method in which PEG-RF mixed organic xerogels were synthesized by blending thermally unstable p...Mesoporous polyethylene glycol-resorcinol and formaldehyde(PEG-RF) carbon xerogels were prepared by a new polymer blend method in which PEG-RF mixed organic xerogels were synthesized by blending thermally unstable polyethylene glycol with organic monomers, resorcinol and formaldehyde and then subjected to pyrolization at 1 000 ℃. The influences of mass ratio of PEG to the theoretical yield of RF xerogel, m(PEG)/m(RF) and the (relative) molecular mass of PEG on the pore structure and electric double layer capacitance(EDLC) performance of PEG-RF carbon xerogels were investigated. The results show that PEG under different conditions leads to the difference of phase separation structure of the polymer blend and thus the change of pore structure of PEG-RF carbon xerogels. Specific surface area and capacity of PEG-RF carbon xerogels in 30% H2SO4 solution can reach (755 m2/g) and 150 F/g, respectively. Their surface can be fully utilized to form electric double layer. However, the pore structure differences of PEG-RF carbon xerogels result in their different EDLC performances. The distributed capacitance effect increases with decreasing the pore size of PEG-RF carbon xerogels.展开更多
Electric double-layer capacitors(EDLCs)with fast frequency response are regarded as small-scale alternatives to the commercial bulky aluminum electrolytic capacitors.Creating carbon-based nanoarray electrodes with pre...Electric double-layer capacitors(EDLCs)with fast frequency response are regarded as small-scale alternatives to the commercial bulky aluminum electrolytic capacitors.Creating carbon-based nanoarray electrodes with precise alignment and smooth ion channels is crucial for enhancing EDLCs’performance.However,controlling the density of macropore-dominated nanoarray electrodes poses challenges in boosting the capacitance of line-filtering EDLCs.Herein,a simple technique to finely adjust the vertical-pore diameter and inter-spacing in three-dimensional nanoporous anodic aluminum oxide(3D-AAO)template is achieved,and 3D compactly arranged carbon tube(3D-CACT)nanoarrays are created as electrodes for symmetrical EDLCs using nanoporous 3D-AAO template-assisted chemical vapor deposition of carbon.The 3D-CACT electrodes demonstrate a high surface area of 253.0 m^(2) g^(−1),a D/G band intensity ratio of 0.94,and a C/O atomic ratio of 8.As a result,the high-density 3D-CT nanoarray-based sandwich-type EDLCs demonstrate a record high specific areal capacitance of 3.23 mF cm^(-2) at 120 Hz and exceptional fast frequency response due to the vertically aligned and highly ordered nanoarray of closely packed CT units.The 3D-CT nanoarray electrode-based EDLCs could serve as line filters in integrated circuits,aiding power system miniaturization.展开更多
The practical application of aqueous zinc-ion batteries for large-grid scale systems is still hindered by uncontrolled zinc dendrite and side reactions.Regulating the elec-trical double layer via the electrode/electro...The practical application of aqueous zinc-ion batteries for large-grid scale systems is still hindered by uncontrolled zinc dendrite and side reactions.Regulating the elec-trical double layer via the electrode/electrolyte interface layer is an effective strategy to improve the stability of Zn anodes.Herein,we report an ultrathin zincophilic ZnS layer as a model regu-lator.At a given cycling current,the cell with Zn@ZnS electrode displays a lower potential drop over the Helmholtz layer(stern layer)and a suppressed diffuse layer,indicating the regulated charge distribution and decreased electric double layer repulsion force.Boosted zinc adsorption sites are also expected as proved by the enhanced electric double-layer capacitance.Consequently,the symmetric cell with the ZnS protection layer can stably cycle for around 3,000 h at 1 mA cm^(-2) with a lower overpotential of 25 mV.When coupled with an I2/AC cathode,the cell demonstrates a high rate performance of 160 mAh g^(-1) at 0.1 A g^(-1) and long cycling stability of over 10,000 cycles at 10 A g^(-1).The Zn||MnO_(2) also sustains both high capacity and long cycling stability of 130 mAh g^(-1) after 1,200 cycles at 0.5 A g^(-1).展开更多
Self-discharge is a significant issue in electric double layer energy storage, which leads to a rapid voltage drop and low energy efficiency. Here, we attempt to solve this problem by changing the structure of the ele...Self-discharge is a significant issue in electric double layer energy storage, which leads to a rapid voltage drop and low energy efficiency. Here, we attempt to solve this problem by changing the structure of the electric double layer into a de-solvated state, by constructing a nano-scale and ion-conductive solid electrolyte layer on the surface of a carbon electrode. The ion concentration gradient and potential field that drive the self-discharge are greatly restricted inside this electric double layer. Based on this understanding, a high-efficiency graphene-based lithium ion capacitor was built up, in which the self-discharge rate is reduced by 50% and the energy efficiency is doubled. The capacitor also has a high energy density, high power output and long life, and shows promise for practical applications.展开更多
The cheap commercial activated carbon (AC) was improved through the secondary activation under steam in the presence of FeCl2 catalyst in the temperature range of 800-950℃ and its application in electric double layer...The cheap commercial activated carbon (AC) was improved through the secondary activation under steam in the presence of FeCl2 catalyst in the temperature range of 800-950℃ and its application in electric double layer capacitors (EDLCs) with organic electrolyte was studied. The re-activation of AC results in the increases in both specific capacitance and high rate capability of EDLCs. For AC treated under optimized conditions, its discharge specific capacitance increases up to 55.65 F/g, an increase of about 33% as compared to the original AC, and the high rate capability was increased significantly. The good performances of EDLC with improved AC were correlated to the increasing mesoporous ratio.展开更多
How to achieve synergistic improvement of permittivity(ε_(r))and breakdown strength(E_(b))is a huge challenge for polymer dielectrics.Here,for the first time,theπ-conjugated comonomer(MHT)can simultaneously promote ...How to achieve synergistic improvement of permittivity(ε_(r))and breakdown strength(E_(b))is a huge challenge for polymer dielectrics.Here,for the first time,theπ-conjugated comonomer(MHT)can simultaneously promote theε_(r)and E_(b)of linear poly(methyl methacrylate)(PMMA)copolymers.The PMMA-based random copolymer films(P(MMA-co-MHT)),block copolymer films(PMMA-b-PMHT),and PMMA-based blend films were prepared to investigate the effects of sequential structure,phase separation structure,and modification method on dielectric and energy storage properties of PMMA-based dielectric films.As a result,the random copolymer P(MMA-coMHT)can achieve a maximumε_(r)of 5.8 at 1 kHz owing to the enhanced orientation polarization and electron polarization.Because electron injection and charge transfer are limited by the strong electrostatic attraction ofπ-conjugated benzophenanthrene group analyzed by the density functional theory(DFT),the discharge energy density value of P(MMA-co-PMHT)containing 1 mol%MHT units with the efficiency of 80%reaches15.00 J cm^(-3)at 872 MV m^(-1),which is 165%higher than that of pure PMMA.This study provides a simple and effective way to fabricate the high performance of polymer dielectrics via copolymerization with the monomer of P-type semi-conductive polymer.展开更多
Zinc-ion batteries are promising for large-scale electrochemical energy storage systems,which still suffer from interfacial issues,e.g.,hydrogen evolution side reaction(HER),self-corrosion,and uncontrollable dendritic...Zinc-ion batteries are promising for large-scale electrochemical energy storage systems,which still suffer from interfacial issues,e.g.,hydrogen evolution side reaction(HER),self-corrosion,and uncontrollable dendritic Zn electrodeposition.Although the regulation of electric double layer(EDL)has been verified for interfacial issues,the principle to select the additive as the regulator is still misted.Here,several typical amino acids with different characteristics were examined to reveal the interfacial behaviors in regulated EDL on the Zn anode.Negative charged acidic polarity(NCAP)has been unveiled as the guideline for selecting additive to reconstruct EDL with an inner zincophilic H_(2)O-poor layer and to replace H_(2)O molecules of hydrated Zn^(2+)with NCAP glutamate.Taking the synergistic effects of EDL regulation,the uncontrollable interface is significantly stabilized from the suppressed HER and anti-self-corrosion with uniform electrodeposition.Consequently,by adding NCAP glutamate,a high average Coulombic efficiency of 99.83%of Zn metal is achieved in Zn|Cu asymmetrical cell for over 2000 cycles,and NH4V4O10|Zn full cell exhibits a high-capacity retention of 82.1%after 3000 cycles at 2 A g^(-1).Recapitulating,the NCAP principle posted here can quicken the design of trailblazing electrolyte additives for aqueous Zn-based electrochemical energy storage systems.展开更多
基金the financial support from the Research Fund for the Doctoral Program of Higher Education of China (No.2006 0290006)
文摘The adsorption capacity and absorption rate for electrolyte onto activated carbon are important parameters used to characterize activated carbon electric double-layer capacitor electrodes. In this paper the pore structure of typical commercial activated carbons, and various Mn-doped activated carbons prepared on a laboratory scale, are described. The pore structure was character-ized by N2 adsorption/desorption isotherms. Isotherms for K+ adsorption onto these activated carbons from the aqueous phase were also obtained. The experimental, equilibrium K+ adsorption data were fitted to the Langmuir, Freundlich or Temkin equations. Adsorption of K+ onto the activated carbons was measured and plotted as a function of time. The adsorption kinetic data were modeled by either pseudo-first or pseudo-second order equations. The Elvoich equation, a liquid film diffusion and an intra-particle diffusion model were used to fit the kinetic data. The results indicate that the adsorption of K+ onto activated carbon is influenced by many factors including pore size distribution, specific surface area and the surface chemistry of the activated carbons. The Temkin equation best describes the equilibrium adsorption data. The pseudo-second order model exactly describes the whole adsorption process, which is controlled by both liquid film and intra-particle diffusion.
文摘In this study, carbon aerogels were derived via the pyrolysis of resorcinol-formaldehyde (RF) aerogels, which were cost-effectively manufactured from RF wet gels by an ambient drying technique instead of conventional supercritical drying. By varying the R/C ratio (molar ratio of resorcinol to catalyst), mesoporous carbon aerogels with high specific surface area were prepared successfully and further investigated as electrode materials for electric double-layer capacitors (EDLCs). The textural properties of carbon aerogels obtained were characterized by nitrogen adsorption/desorption analysis and SEM. The electrochemical performances of carbon aerogels were investigated by impedance spectroscopy, galvanostatic charge/discharge and cyclic voltammetry methods. The results show that BET surface area and specific capacitance increase with R/C ratio, the maximum values of 727 m2·g-1 and 132 F·g-1 are achieved at R/C ratio will of 300. Increasing R/C ratio increase the average pore size of carbon aerogel electrode, which has improved the rate capability. Furthermore, EDLC with carbon aerogel electrodes has an excellent stability at large discharge current and long cycle life.
基金Project(51371198)supported by the National Natural Science Foundation of China
文摘A spiro-type quaternary ammonium salt, spiro-(1,1′)-bipyrrolidinium tetrafluoroborate(SBP-BF4) was successfully prepared by an economical and efficient three-step process comprising the cyclization reaction of 1,4-dibromobutane and pyrrolidine, and subsequent ion exchange pathway with KOH followed by neutralization reaction via HBF4 in the system of ethanol solution. 1H NMR, 13 C NMR, FI-IR and XPS analyses showed the structure of SBP-BF4. The as-obtained SBP-BF4 was dissolved in AN and used as the electrolyte for supercapacitor. Electrochemical measurements demonstrate that, compared with commercial electrolyte TEMA-BF4/AN, SBP-BF4/AN exhibits high ionic conductivity, lower resistance and improved cycling performance, which is due to its smaller ion size and stable symmetry structure.
基金National Natural Science Foundation of China (No. 50902102 and No. 51172160)
文摘To investigate the influence of expansion pretreatment for materials on carbon structure, activated carbons (ACs) were prepared from corncob with/without expansion pretreatment by KOH activation, the structure properties of which were determined based on N2 adsorption isotherm at 77 K. The results show that the expansion pretreatment for corncobs is beneficial to the preparation of ACs with high surface area. The specific surface area of the AC derived from corncob with expansion pretreatment (AC-1) is 32.5% larger than that without expansion pretreatment (AC-2). Furthermore, to probe the potential application of corncob-based ACs in electric double-layer capacitor (EDLC), the prepared ACs were used as electrode materials to assemble EDLC, and its electrochemical performance was investi- gated. The results indicate that the specific capacitance of AC-I is 276 F/g at 50 mA/g, which increases by 27% com- pared with that of AC-2 (217 F/g). As electrode materials, AC-1 presents a better electrochemical performance than AC-2, including a higher voltage maintenance ratio and a lower leakage current.
基金Supported by the Young Teacher Scientific Research Foundation of BU CT(No.QN0 2 4 9) and National Natural ScienceFoundation(No.5 0 2 72 0 70 )
文摘Activated carbons(ACs) with a wide range of surface areas were made from petroleum coke by means of KOH activation. The electrochemical characterization was carried out for several activated carbons used as polarizable electrodes of electric double-layer capacitors(EDLCs) in an aqueous electrolytic solution. The porous structures and electrochemical double-layer capacitance of the activated carbons were investigated by virtue of nitrogen gas adsorption and constant current cycling(CCC) methods. The relationship among the surface area, pore volume of the activated carbons and specific double-layer capacitance was discussed. It was found that the specific capacitance of ACs increased linearly with the increase of surface area. The presence of mesopores in the activated carbons with very high surface area(>2000 m\+2/g) was not very effective for them to be used as EDLCs. The influence of chemical characteristics of the activated carbons on the double layer formation could be considered to be negligible.
文摘In recent years, application of carbon-based nano material to electrode material has been paid attention, however, due to its higher cost, it would be difficult to put it into practical use. Then, we have proposed to make nano carbon fiber with lower production cost. The purpose of our research was, to apply our nano carbon fiber to electrical double-layer capacitor electrode. We used cotton candy method to make nano fiber, and applied microwave heating for carbonization. By applying nano carbon fiber to electrical double-layer capacitor electrode, we got results that thicker electrode containing nano carbon fiber leads to lower resistance value, compared with electrode without containing nano carbon fiber. From this result, it was indicated that by containing nano carbon fiber, the electric bypass was formed in the electrode.
文摘Electrolytic conductivity, viscosity and electrochemical behavior were investigated for organic electrolytes based on PC(Propylene carbonate), MAN(Methoxy acetonitrile) and GBL(γ-Butyrolactone) solvents. It was found that 1 mol/L Et4NBF4-MAN had the highest conductivity, lowest viscosity and acceptable potential window. The specific capacitance and energy density obtained from the capacitor using 1 mol/L Et4NBF4-MAN as electrolyte were the highest among all the tested electrolytes.(1 mol/L) Et4NBF4-GBL also seemed promising to be used in electric double-layer capacitor (EDLCs).
基金The authors acknowledge the support from National Natural Science Foundation of China(51972168,51672124,21603096)Program for Innovative Talents and Entrepreneur in Jiangsu,State Key Laboratory of Catalytic Materials and Reaction Engineering(RIPP,SINOPEC),and Technical Center of Nano Fabrication and Characterization of Nanjing University.
文摘For delivering the nanoscaled extraordinary characteristics in macroscopical bulk,it is essential to integrate two-dimensional nanosheets into threedimensional(3D)porous monoliths,alternatively called as 3D architectures,3D networks,or aerogels.The intersupported structure of porous monolithic 3D graphene(3DG)can prevent aggregation or restacking of graphene individuals,and the interconnected sp^(2) network of 3DG not only can provide the highway for the transport of electron/phonon but also can present continual cavities/channels for mass transfer.This review summarizes the synthesis methodology of 3DG porous monoliths and highlights the application for electric double-layer capacitors.Present challenges and future prospects about the manufacture and application of 3DG are also discussed.
基金supported by the National Natural Science Foundation of China(21203008 and 21975025)Beijing Natural Science Foundation(2172051)the State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,Donghua University。
文摘Activated carbon(AC)in organic electrolytebased electric double-layer capacitors(EDLCs)usually suffers from low specific capacitance.Most studies on AC focus on improving its surface area and optimizing pore structures to enhance its electrochemical performance in EDLCs.Unfortunately,the interfacial microenvironment,which is composed of nanoporous carbon and the organic electrolyte confined in it,is always ignored.Herein,a simple and powerful strategy to create AC with an ionophobic surface is proposed to address the poor efficiency of the electric doublelayer process.The polar C±F bonds formed in the AC material are characterized through near-edge X-ray absorption fine structure and X-ray photoelectron spectroscopy.The ionophobic characteristic of YP-F60 s in an organic electrolyte is extensively studied via contact angle measurements and smallangle X-ray scattering spectroscopy.An EDLC constructed with YP-F60 s as the electrode and 1 mol L^(-1) tetraethylammonium tetrafluoroborate/propylene carbonate as the electrolyte demonstrates high specific capacitance,low internal resistance,and excellent cycling stability.Our results successfully demonstrate the importance of the interfacial microenvironment of AC and its confined electrolyte to the electrochemical performance of EDLCs.Our work also offers new perspectives on the use of the CF;plasma technique to fabricate low-cost superior carbon for EDLCs.
基金supported by a Scientific Research Grant from the Japan Society for the Promotion of Science and the Special Coordination Fund for Promoting Science and Technology from the Japanese Ministry of Education, Culture, Sports, Science and Technology and a grant for Scientific Research on Priority Areas from the University of Miyazaki
文摘The space-charge distributions of electric double-layer capacitors (EDLCs), which are energy storage devices, were examined with the pulsed electroacoustic (PEA) method. It was found that the experimental results could be influenced by the reflection and penetration of sound waves when the space-charge dis- tributions of EDLCs were measured with the PEA method. This is because EDLCs have a five-layer structure consisting of three materials (aluminum, cellulose, and activated carbon). We calculated the reflection wave components that influenced the charge density through the acoustic impedance and the relative permittivity of the materials. In this way, we found that the changes in the space-charge distributions of EDLCs and their charge characteristics corresponded closely. We determined that measuring the space- charge distributions with the PEA method was effective for evaluating the charge accumulation of EDLCs. In this study, a polarized electrode was prepared for use in EDLCs. The ratio of the surface area to the average pore diameter of the polarized electrode was measured with the nitrogen adsorption method at 77 K. The relationship between the ratio of the surface area to the average pore size and the space-charge distributions of EDLCs is also discussed in this paper.
基金the financial support from"The Fundamental Research Funds for the Central Universities"(Grant No.2017XKQY052)
文摘To understand the mesoscopic mechanism of clayey soil in view of macroscopic behavior, it is essential to quantitatively calculate the electric double-layer repulsion between arbitrarily inclined clay particles.However, suitable calculation methods with high efficiency and accuracy are still rare at present in literature. Based on a great number of numerical calculations of the repulsion between two inclined platy clay particles, explicit empirical formulae for estimating electric double-layer repulsion between clay particles are put forward. Comparison between the empirical solutions and corresponding numerical results shows that the proposed formulae have a reasonable accuracy, and application of the presented formula is easy and efficient.
基金supported by the National Basic Research Program of China(Grant Nos.2011CBA00106 and 2014CB921401)the National Natural Science Foundation of China(Grant Nos.11174342,9131208,and 11374344)
文摘Electric double-layer field effect experiments were performed on ultrathin films of La0.325Pr0.3Ca0.375MnO3, which is noted for its micrometer-scale phase separation. A clear change of resistance up to 220% was observed and the characteristic metal-insulator transition temperature Tp was also shifted. The changes of both the resistance and Tp, suggest that the electric field induced not only tuning of the carrier density but also rebalancing of the phase separation states. The change of the charge-ordered insulating phase fraction was estimated to be temperature dependent, and a maximum of 16% was achieved in the phase separation regime. This tuning effect was partially irreversible, which might be due to an oxygen vacancy migration that is driven by the huge applied electric field.
基金Project supported by National High-Technology Research and De-velopment Program(Grant No .863 -2002AA302302)
文摘Multi-walled carbon nanombes with homogeneous diameters (40 - 60 nm), produced by chemical vapor deposition of hydrocarbon gas, are purified by nitric acids. Infrared and Raman studies indicate that oxygen containing surface groups, which are predominately carboxylic, phenolic and lactonic groups, are introduced into purified carbon nanotubes. Then three kinds of block-form porous tablets of carbon nanotubes are fabricated as electrodes in electrochemical double-layer capacitors. Using mounded mixture comprising carbon nanotubes and binder powders provides these tablets. Comparison of the effect of different processing on the structural performance of the capacitors is specifically investigated. Using chemically treated electrodes, electrochemical double-layer capacitors with a specific capacitance of about 33 F/g are obtained with 38 wt % H2SO4 as the electrolyte.
文摘Mesoporous polyethylene glycol-resorcinol and formaldehyde(PEG-RF) carbon xerogels were prepared by a new polymer blend method in which PEG-RF mixed organic xerogels were synthesized by blending thermally unstable polyethylene glycol with organic monomers, resorcinol and formaldehyde and then subjected to pyrolization at 1 000 ℃. The influences of mass ratio of PEG to the theoretical yield of RF xerogel, m(PEG)/m(RF) and the (relative) molecular mass of PEG on the pore structure and electric double layer capacitance(EDLC) performance of PEG-RF carbon xerogels were investigated. The results show that PEG under different conditions leads to the difference of phase separation structure of the polymer blend and thus the change of pore structure of PEG-RF carbon xerogels. Specific surface area and capacity of PEG-RF carbon xerogels in 30% H2SO4 solution can reach (755 m2/g) and 150 F/g, respectively. Their surface can be fully utilized to form electric double layer. However, the pore structure differences of PEG-RF carbon xerogels result in their different EDLC performances. The distributed capacitance effect increases with decreasing the pore size of PEG-RF carbon xerogels.
基金supported by the National Natural Science Foundation of China(91963202,52072372,52372241,52232007,12325203)HFIPS Director’s Fund(BJPY2023A07,YZJJ-GGZX-2022-01).
文摘Electric double-layer capacitors(EDLCs)with fast frequency response are regarded as small-scale alternatives to the commercial bulky aluminum electrolytic capacitors.Creating carbon-based nanoarray electrodes with precise alignment and smooth ion channels is crucial for enhancing EDLCs’performance.However,controlling the density of macropore-dominated nanoarray electrodes poses challenges in boosting the capacitance of line-filtering EDLCs.Herein,a simple technique to finely adjust the vertical-pore diameter and inter-spacing in three-dimensional nanoporous anodic aluminum oxide(3D-AAO)template is achieved,and 3D compactly arranged carbon tube(3D-CACT)nanoarrays are created as electrodes for symmetrical EDLCs using nanoporous 3D-AAO template-assisted chemical vapor deposition of carbon.The 3D-CACT electrodes demonstrate a high surface area of 253.0 m^(2) g^(−1),a D/G band intensity ratio of 0.94,and a C/O atomic ratio of 8.As a result,the high-density 3D-CT nanoarray-based sandwich-type EDLCs demonstrate a record high specific areal capacitance of 3.23 mF cm^(-2) at 120 Hz and exceptional fast frequency response due to the vertically aligned and highly ordered nanoarray of closely packed CT units.The 3D-CT nanoarray electrode-based EDLCs could serve as line filters in integrated circuits,aiding power system miniaturization.
基金financially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC),through the Discovery Grant Program (RGPIN-2018-06725)the Discovery Accelerator Supplement Grant program (RGPAS-2018-522651)+2 种基金the New Frontiers in Research Fund-Exploration program (NFRFE-2019-00488)supported by funding from the Canada First Research Excellence Fund as part of the University of Alberta’s Future Energy Systems research initiative (FES-T06-Q03)supported by the Chinese Scholarship Council (CSC)(Grant No. 202006450027).
文摘The practical application of aqueous zinc-ion batteries for large-grid scale systems is still hindered by uncontrolled zinc dendrite and side reactions.Regulating the elec-trical double layer via the electrode/electrolyte interface layer is an effective strategy to improve the stability of Zn anodes.Herein,we report an ultrathin zincophilic ZnS layer as a model regu-lator.At a given cycling current,the cell with Zn@ZnS electrode displays a lower potential drop over the Helmholtz layer(stern layer)and a suppressed diffuse layer,indicating the regulated charge distribution and decreased electric double layer repulsion force.Boosted zinc adsorption sites are also expected as proved by the enhanced electric double-layer capacitance.Consequently,the symmetric cell with the ZnS protection layer can stably cycle for around 3,000 h at 1 mA cm^(-2) with a lower overpotential of 25 mV.When coupled with an I2/AC cathode,the cell demonstrates a high rate performance of 160 mAh g^(-1) at 0.1 A g^(-1) and long cycling stability of over 10,000 cycles at 10 A g^(-1).The Zn||MnO_(2) also sustains both high capacity and long cycling stability of 130 mAh g^(-1) after 1,200 cycles at 0.5 A g^(-1).
基金supported by the National Natural Science Foun-dation of China (Nos. 51525206 , 51521091 and 51172239)the Ministry of Science and Technology of China(2016YFA0200100 ,2016YFB0100100)+4 种基金the Strategic Priority Research Program of Chinese Academy of Science (XDA22010602)the Key Research Program of Chinese Academy of Sciences (Grant No. KGZD-EWT06)the Program for Guangdong Introducing Innovative and Enterpreneurial Teamsthe Strategic Priority Research Program of Chinese Academy of Science (No. XDA22010602)the Development and Reform Commission of Shenzhen Municipality for the development of the “Low-Dimensional Materials and Devices” discipline
文摘Self-discharge is a significant issue in electric double layer energy storage, which leads to a rapid voltage drop and low energy efficiency. Here, we attempt to solve this problem by changing the structure of the electric double layer into a de-solvated state, by constructing a nano-scale and ion-conductive solid electrolyte layer on the surface of a carbon electrode. The ion concentration gradient and potential field that drive the self-discharge are greatly restricted inside this electric double layer. Based on this understanding, a high-efficiency graphene-based lithium ion capacitor was built up, in which the self-discharge rate is reduced by 50% and the energy efficiency is doubled. The capacitor also has a high energy density, high power output and long life, and shows promise for practical applications.
基金The authors are grateful for the National Natural Science Foundation of China (20003005) the Natural Science Foundation of Jiangsu Province (BQ2000009).
文摘The cheap commercial activated carbon (AC) was improved through the secondary activation under steam in the presence of FeCl2 catalyst in the temperature range of 800-950℃ and its application in electric double layer capacitors (EDLCs) with organic electrolyte was studied. The re-activation of AC results in the increases in both specific capacitance and high rate capability of EDLCs. For AC treated under optimized conditions, its discharge specific capacitance increases up to 55.65 F/g, an increase of about 33% as compared to the original AC, and the high rate capability was increased significantly. The good performances of EDLC with improved AC were correlated to the increasing mesoporous ratio.
基金the funding of National Key R&D Program of China(No.2020YFA0711700)Hunan National Natural Science Foundation(2021JJ30652)+3 种基金National Natural Science Foundation of China(52002404)Natural Science Foundation of Guangdong Province(2020A1515011198)Characteristic Innovation Projects of Colleges and Universities in Guangdong Province(2020KT SCX081)State Key Laboratory of Powder Metallurgy,Central South University,Changsha,China
文摘How to achieve synergistic improvement of permittivity(ε_(r))and breakdown strength(E_(b))is a huge challenge for polymer dielectrics.Here,for the first time,theπ-conjugated comonomer(MHT)can simultaneously promote theε_(r)and E_(b)of linear poly(methyl methacrylate)(PMMA)copolymers.The PMMA-based random copolymer films(P(MMA-co-MHT)),block copolymer films(PMMA-b-PMHT),and PMMA-based blend films were prepared to investigate the effects of sequential structure,phase separation structure,and modification method on dielectric and energy storage properties of PMMA-based dielectric films.As a result,the random copolymer P(MMA-coMHT)can achieve a maximumε_(r)of 5.8 at 1 kHz owing to the enhanced orientation polarization and electron polarization.Because electron injection and charge transfer are limited by the strong electrostatic attraction ofπ-conjugated benzophenanthrene group analyzed by the density functional theory(DFT),the discharge energy density value of P(MMA-co-PMHT)containing 1 mol%MHT units with the efficiency of 80%reaches15.00 J cm^(-3)at 872 MV m^(-1),which is 165%higher than that of pure PMMA.This study provides a simple and effective way to fabricate the high performance of polymer dielectrics via copolymerization with the monomer of P-type semi-conductive polymer.
基金funded by the National Natural Science Foundation of China(U21B2057,12102328,and 52372252)the Newly Introduced Scientific Research Start-up Funds for Hightech Talents(DD11409024).
文摘Zinc-ion batteries are promising for large-scale electrochemical energy storage systems,which still suffer from interfacial issues,e.g.,hydrogen evolution side reaction(HER),self-corrosion,and uncontrollable dendritic Zn electrodeposition.Although the regulation of electric double layer(EDL)has been verified for interfacial issues,the principle to select the additive as the regulator is still misted.Here,several typical amino acids with different characteristics were examined to reveal the interfacial behaviors in regulated EDL on the Zn anode.Negative charged acidic polarity(NCAP)has been unveiled as the guideline for selecting additive to reconstruct EDL with an inner zincophilic H_(2)O-poor layer and to replace H_(2)O molecules of hydrated Zn^(2+)with NCAP glutamate.Taking the synergistic effects of EDL regulation,the uncontrollable interface is significantly stabilized from the suppressed HER and anti-self-corrosion with uniform electrodeposition.Consequently,by adding NCAP glutamate,a high average Coulombic efficiency of 99.83%of Zn metal is achieved in Zn|Cu asymmetrical cell for over 2000 cycles,and NH4V4O10|Zn full cell exhibits a high-capacity retention of 82.1%after 3000 cycles at 2 A g^(-1).Recapitulating,the NCAP principle posted here can quicken the design of trailblazing electrolyte additives for aqueous Zn-based electrochemical energy storage systems.