THe effects of strong convection electric field on the electron density in the auroral ionosphericF-region have been simulated numerically by means of a physical model. It is found that an enhancement of electric fiel...THe effects of strong convection electric field on the electron density in the auroral ionosphericF-region have been simulated numerically by means of a physical model. It is found that an enhancement of electric field directed west-northward in post-noon or west-southward in pre-noon results in an ionization depletion with its maximum at altitudes 40–50 km higher than that of theF 2 peak. When the enhanced electric field lasts for 45 min and has a maximum about 32 mV/m, the resulted ionization depletions reach their maximum at the time just ~10 min behind the time when the convection electric field and ion temperature enhancements reach their maximum. This is consistent well with EISCAT observations. The magnitudes of the percentage ionization depletions and their recovery time are dependent not only on the intensity of the electric field, but also on the diurnal variation phase of the background electron density.展开更多
The process of 180°domain switching in PbTiO_3 single crystal under an antiparallel electric field was investigated by the three-dimensional phase field simulation,especially the effect of electric field on the t...The process of 180°domain switching in PbTiO_3 single crystal under an antiparallel electric field was investigated by the three-dimensional phase field simulation,especially the effect of electric field on the type and duration of domain switching.It is found that the polarization reversal of domains takes place under an antiparallel electric field in PbTiO_3 single crystal.The results of the phase field simulation indicate that there is only 90°domain switching under a weak electric field.With the rise of the electric field,180°domain switching appears.If the electric field is strengthened further,90°domain switching disappears and the duration of domain switching is shortened.展开更多
Reconnection electric field is a key element of magnetic reconnection.It quantifies the change of magnetic topology and the dissipation of magnetic energy.In this work,two-dimensional(2D)particle-in-cell(PIC)simulatio...Reconnection electric field is a key element of magnetic reconnection.It quantifies the change of magnetic topology and the dissipation of magnetic energy.In this work,two-dimensional(2D)particle-in-cell(PIC)simulations are performed to study the growth of the reconnection electric field in the electron diffusion region(EDR)during magnetic reconnection with a guide field.At first,a seed electric field is produced due to the excitation of the tearing-mode instability.Then,the reconnection electric field in the EDR,which is dominated by the electron pressure tensor term,suffers a spontaneous growth stage and grows exponentially until it saturates.A theoretical model is also proposed to explain such a kind of growth.The reconnection electric field in the EDR is found to be directly proportional to the electron outflow speed.The time derivative of electron outflow speed is proportional to the reconnection electric field in the EDR because the outflow is formed after the inflow electrons are accelerated by the reconnection electric field in the EDR and then directed away along the outflow direction.This kind of reinforcing process at last leads to the exponential growth of the reconnection electric field in the EDR.展开更多
The flowing behavior of liquid slag has an important effect on the heat efficiency, recovery ratio ofvaluable metals and life span of the electric cleaning furnace. The velocity procedure using "κ-ε" model...The flowing behavior of liquid slag has an important effect on the heat efficiency, recovery ratio ofvaluable metals and life span of the electric cleaning furnace. The velocity procedure using "κ-ε" model wasdeveloped under the cylindrical coordinate system. The procedure is used to calculate the velocity field ofmolten slag. The forces acting on molten slag were analyzed. The calculating method of electromagnetic forcewas described. The discrete equations, which were solved by using SIMPLE algorithm, were generated bymeans of interlace grids and control volume. The boundary layers near the solid wall were treated as wallfunction. The velocity distribution is obtained. The results show that the velocity of molten slag varies withdifferent horizontal sections. There are six eddies in the surface layer of molten slag. A large circle is formedin the sections below the electrodes, while the longitudinal section includes two large circles around the electrode. The influences of the features of the velocity field on the operation in the electric cleaning furnace arediscussed in detail.展开更多
A theoretical model of ionospheric electric fields at mid-and low-latitudes is developed.In the geomagnetic dipolar coordinate system,the ionospheric dynamo equations were solved,and the ionospheric electric potential...A theoretical model of ionospheric electric fields at mid-and low-latitudes is developed.In the geomagnetic dipolar coordinate system,the ionospheric dynamo equations were solved,and the ionospheric electric potential and electric field were derived respectively.Major parameters for the model inputs,such as the neutral winds,the densities and temperatures of electron,ions and neutrals,are obtained from empirical models.The global ionospheric electrical potential and field at mid-and low-latitudes derived from our model are largely in agreement with the results presented by other authors and the empirical model.Using our model,it is found that the diurnal component of the HWM93 wind mainly contributed to the formation of the vertical electric field,while the semidiurnal component mainly contributed to the zonal electric field.Finally,by adjustment of the input F region winds and conductivities,most discrepancies between our model and the empirical one can be eliminated,and it is proved that the F region dynamo is the most significant contribution to the electric fields.展开更多
Molecular dynamics simulations of liquid water were performed at 258 K and density of 1.0 g/cm^3 under different strengths of an external electric field, ranging from 0 to 8.0×10^9V/m, to investigate the influenc...Molecular dynamics simulations of liquid water were performed at 258 K and density of 1.0 g/cm^3 under different strengths of an external electric field, ranging from 0 to 8.0×10^9V/m, to investigate the influence of an external field on structural and dynamic properties of water. The flexible simple point charge model is used for water molecules. An enhancement of the water hydrogen bond structure with increasing strength of the electric field has been deduced from the radial distribution functions and the analysis of hydrogen bond structure. With increasing field strength, water system has a more perfect structure, which is shnilar to ice structure. However, the electrofreezing phenomenon of liquid water has not been detected because of a too large self-diffusion coefficient. The self-diffusion coefficient decreases remarkably with increasing strength of electric field, and the self-diffusion coefficient is anisotropic.展开更多
Region partition(RP) is the key technique to the finite element parallel computing(FEPC),and its performance has a decisive influence on the entire process of analysis and computation.The performance evaluation index ...Region partition(RP) is the key technique to the finite element parallel computing(FEPC),and its performance has a decisive influence on the entire process of analysis and computation.The performance evaluation index of RP method for the three-dimensional finite element model(FEM) has been given.By taking the electric field of aluminum reduction cell(ARC) as the research object,the performance of two classical RP methods,which are Al-NASRA and NGUYEN partition(ANP) algorithm and the multi-level partition(MLP) method,has been analyzed and compared.The comparison results indicate a sound performance of ANP algorithm,but to large-scale models,the computing time of ANP algorithm increases notably.This is because the ANP algorithm determines only one node based on the minimum weight and just adds the elements connected to the node into the sub-region during each iteration.To obtain the satisfied speed and the precision,an improved dynamic self-adaptive ANP(DSA-ANP) algorithm has been proposed.With consideration of model scale,complexity and sub-RP stage,the improved algorithm adaptively determines the number of nodes and selects those nodes with small enough weight,and then dynamically adds these connected elements.The proposed algorithm has been applied to the finite element analysis(FEA) of the electric field simulation of ARC.Compared with the traditional ANP algorithm,the computational efficiency of the proposed algorithm has been shortened approximately from 260 s to 13 s.This proves the superiority of the improved algorithm on computing time performance.展开更多
The electric field intensity (EFI) is important characteristic quantity for evaluating the internal insulation state of cable joints. Based on finite element method, this paper proposes two EFI research methods, field...The electric field intensity (EFI) is important characteristic quantity for evaluating the internal insulation state of cable joints. Based on finite element method, this paper proposes two EFI research methods, field-circuit coupling method and equivalent circuit method. The average EFI of the inner surface of the outer semi-conducting shield can be calculated from the current in the measuring circuit. The relative error between these two methods is about 15%, which roughly proves the consistency of the two methods. Further practical application research enables online monitoring of cable joints.展开更多
For the studies in the field of high voltage power transmission, this paper has adopted the method of finite element node potential, and put forward two kinds of high pressure sensor-fixture modeling scheme for the se...For the studies in the field of high voltage power transmission, this paper has adopted the method of finite element node potential, and put forward two kinds of high pressure sensor-fixture modeling scheme for the sensor-fixture of the high voltage side, the simulation analysis shows that the sensor-fixture surface should be smooth, and should not appear the conclusion of edges and corners. While through establishing the four clamps assembly optimized model, and simulates the strain gages, fixtures and conductor surface field strength and electric field distribution in the model as a whole in turn, this paper Finally got the optimal size of fixture structure and assembly of each part reasonable location layout.展开更多
The installed porcelain insulators on existing railway lines in China are prone to“snow flash”in winter.In order to prevent the occurrence of“snow flash”and improve the reliability of the insulators,a composite-po...The installed porcelain insulators on existing railway lines in China are prone to“snow flash”in winter.In order to prevent the occurrence of“snow flash”and improve the reliability of the insulators,a composite-porcelain insulator is designed.A multi-physics coupling simulation model is built based on numerical simulation methods of the electromagnetic field theory and computational fluid dynamics.Taking average electric field intensity on the surface of the insulator as the characteristic parameter of the electric field distortion degree and the snow crystal collision coefficient and distribution coefficient as the characteristic parameter of snow crystal deposition,the characteristics of snow crystal deposition under different wind speeds and wind direction angles and the electric field characteristics under two snow cover types are analyzed.The simulation results show that the average electric field intensity of composite-porcelain insulators is 10.4%and 13.8%,respectively,lower than that of porcelain insulators in vertical and horizontal wind snow covers,which can effectively reduce the degree of electric field distortion.The collision coefficient of snow crystals on the surface of the composite-porcelain insulator sheds is 16.0%higher than that of the porcelain insulator,and the collision coefficient of the trunk and the fittings are lower 20.2%and 11.9%than that of the porcelain insulator.There is almost no change in the distribution coefficient of the insulator sheds.展开更多
The study of the electric field around a surge arrester is useful for design procedures and diagnostic tests. The current work com- putes the electric field around a medium voltage gapless surge arrester using 2D and ...The study of the electric field around a surge arrester is useful for design procedures and diagnostic tests. The current work com- putes the electric field around a medium voltage gapless surge arrester using 2D and 3D representation of the arrester. The 2D simulation design, which is described in IEC 60099-4 Standard, cannot include the non symmetrical parts of the arrester geometry and the test arrange- ment. 3D simulation procedures have the advantage that takes into account these asymmetries, giving more accurate results for each measurement position. In order to confirm the suitability of the created models, the simulation results of the electric field, using the 2D and 3D edition of PC Opera, are compared with recorded measurements, which are obtained in laboratory using appropriate calibrated field meters.展开更多
The choice of the UHV lines depends on surface electric field of the bundle conductors.Based on existing calculation methods,the optimized charge simulation method is used to calculate the conductors' surface elec...The choice of the UHV lines depends on surface electric field of the bundle conductors.Based on existing calculation methods,the optimized charge simulation method is used to calculate the conductors' surface electrical field of±800 kV UHVDC transmission lines in this paper.During calculation,the offset distance is set as the variance of the objective function,the position and the quantity of the simulation charges are optimized with the gold section method,and the surface electrical field is calculated when the charge is in the optimal position.The result shows that the distribution of the surface electrical field and its maximal value can be calculated accurately with this method,although less number of simulation charges is used in this proposed method and the calculation is simple.展开更多
The PARASOL code and the simulation by using PARASOL are introduced briefly. The PARASOL code with particle-in-cell (PIC) method and binary collision model was developed in JAERI and JAEA. Simulations using PARASOL ...The PARASOL code and the simulation by using PARASOL are introduced briefly. The PARASOL code with particle-in-cell (PIC) method and binary collision model was developed in JAERI and JAEA. Simulations using PARASOL code were carried out in order to investigate the power and particle control with diveror system in fusion reactors. The one-dimensional (1D) version of PARASOL was adopted to investigate the Bohm criterion, the supersonic flow, the SOL heat conduction, and so on. The heat propagation due to edge localized mode (ELM) was studied with the 1D-dynamic PARASOL. The two-dimensional version of PARASOL for the whole tokamak plasma including scrape-off-layer (SOL)-divertor region was useful for simulating the SOL flow pattern, the electric field formation etc. Based on PARASOL simulation results, improved physics modeling for the fluid simulation was built up.展开更多
The electric field induced Lyman-a emission diagnostic aims to provide a non intrusive and precise measurement of the electric field in plasma, using a beam of hydrogen atoms prepared in the metastable 2s state. The m...The electric field induced Lyman-a emission diagnostic aims to provide a non intrusive and precise measurement of the electric field in plasma, using a beam of hydrogen atoms prepared in the metastable 2s state. The metastable particles are obtained by means of a proton beam extracted from a hydrogen plasma source, and neutralised by interaction with vaporised caesium. When a 2s atom enters a region where an electric field is present, it undergoes a transition to the 2p state (Stark mixing). It then quickly decays to the ground level, emitting Lyman-a radiation, which is collected by a photomultiplier. The 2s → 2p transition rate is proportional to the square of the magnitude of the electric field, and depends on the field oscillation frequency (with peaks around l GHz). By measuring the intensity of the Lyman-a radiation emitted by the beam it is possible to determine the magnitude of the field in a defined region. In this work, an analysis of the behaviour of the diagnostic under static or radiofrequency electric field is presented. Electric field simulations obtained with a finite element solver of Maxwell equations, combined with theoretical calculations of the Stark mixing transition rate, are used to develop a model for the interpretation of photomultiplier data. This method shows good agreement with experimental results for the static field case, and allows to measure the field magnitude for the oscillating case.展开更多
This paper explores the patterns of influence of the negative radial electric field on the drift displacement and trajectory of charged particles, for it is essential for further investigation into the transitional me...This paper explores the patterns of influence of the negative radial electric field on the drift displacement and trajectory of charged particles, for it is essential for further investigation into the transitional mechanism of L-H Mode. In the light of superposition between the poloidal velocity of charged particles and the E × B drift caused by the negative radial electric field, the paper offers a theoretical analysis and value simulations. Under the action of different radial electric fields, results have been obtained in regard to changes in the velocity of charged particles (mainly ions), patterns of changes in drift displacement, regional change of banana particles, and features of transition and change between trajectories of transiting particles and banana particles.展开更多
Molecular dynamics simulation was carried out to study the behavior of liquid 1,2-dichloroethane molecules under external electric fields including direct current field, alternating current field and positive-half-per...Molecular dynamics simulation was carried out to study the behavior of liquid 1,2-dichloroethane molecules under external electric fields including direct current field, alternating current field and positive-half-period cosin field. The maximum applied field strength was 10^8 V/m , the maximum frequency of the alternating current field and that of the positive-half-period cosine field was 10^12 Hz . The simulation revealed that the field type and field strength act on the population of the molecular configuration. In the strong direct current field, all trans forms converted completely into gauche forms. Order parameter and the correlation of the system torsion angle were also investigated. The results suggested that these two dynamical parameters depended also on the field type and the field strength. The maximum of order parameter was found to be at 0.6in the strong direct current field.展开更多
When separated water droplets condense on the surface of a composite insulator,the electrical field on the insulator surface is distorted.In turn,such distortions change the trajectories of pollution particles.In this...When separated water droplets condense on the surface of a composite insulator,the electrical field on the insulator surface is distorted.In turn,such distortions change the trajectories of pollution particles.In this study,the COMSOL software is used to simulate such a process for the FXBW4-10/100 composite insulator with or without water droplets condensation under a 10 kV DC voltage.The influence of the wind speed and particles concentration on the contamination characteristics of the considered 110 kV insulator is analyzed.The results show that:1)in the presence of water droplets on the insulator surface,the ratio of electrical field force and gravity acting on the particles is large;2)the contamination on the insulator surface increases with the wind speed;3)when the wind speed is small,the relationship between the contamination amount and the pollution concentration is essentially linear.展开更多
The present work introduces a mathematical model for ionic fluid that flows under the effect of both pulsating pressure and axial electromagnetic field. The fluid is treated as a Newtonian fluid applying Navier-Stokes...The present work introduces a mathematical model for ionic fluid that flows under the effect of both pulsating pressure and axial electromagnetic field. The fluid is treated as a Newtonian fluid applying Navier-Stokes equation. The fluid is considered as a neutral mixture of positive and negative ions. The effect of axial electric field is investigated to determine velocity profiles. Hydroelectric equation of the flow is deduced under dc and ac external electric field. Hence the effect of applied frequency (0-1 GHz) and amplitude (10-350 V/m) is illustrated. The ultimate goal is to approach the problem of EMF field interaction with blood flow. The applied pressure waveform is represented as such to simulate the systolic-diastolic behavior. Simulation was carried out using Maple software using blood plasma parameters; hence velocity profiles under various conditions are reported.展开更多
Myoglobin has important biological functions in storing and transporting small diatomic molecules in human body. Two possible orientations of carbon monoxide (CO) in the heme distal pocket (named as BI and B2 state...Myoglobin has important biological functions in storing and transporting small diatomic molecules in human body. Two possible orientations of carbon monoxide (CO) in the heme distal pocket (named as BI and B2 states) of myoglobin have been experimentally indicated. In this study, ab initio quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulation of CO in myoglobin was carried out to investigate the two possible B states. Our results demonstrate that the B1 and B2 states correspond to Fe... CO (with carbon atom closer to iron center of heme) and Fe... OC (with oxygen atom closer to Fe), by comparing with the experimental infrared spectrum. QM electrostatic polarization effect on CO brought from the protein and solvent environment is the main driving force, which anchors CO in two distinctive orientations and hinders its rotation. The calculated vibrational frequency shift between the state B1 and B2 is 13.1 cm-1, which is in good agreement with experimental value of 11.5 cm-1. This study also shows that the electric field produced by the solvent plays an important role in assisting protein functions by exerting directional electric field at the active site of the protein, From residue-based electric field decomposition, several residues were found to have most contributions to the total electric field at the CO center, including a few charged residues and three adjacent uncharged polar residues (namely, HIS64, ILE107, and PHE43). This study provides new physical insights on rational design of enzyme with higher electric field at the active site.展开更多
A three dimensional steady-state magnetohydrodynamic model is developed for the arc plasma in a DC submerged electric arc furnace for the production of fused MgO. The arc is generated in a small semi-enclosed space fo...A three dimensional steady-state magnetohydrodynamic model is developed for the arc plasma in a DC submerged electric arc furnace for the production of fused MgO. The arc is generated in a small semi-enclosed space formed by the graphite electrode, the molten bath and unmelted raw materials. The model is first used to solve a similar problem in a steel making furnace, and the calculated results are found to be in good agreement with the published measurements. The behavior of arcs with different arc lengths is also studied in the furnace for MgO production. From the distribution of the arc pressure on the bath surface it is shown that the arc plasma impingement is large enough to cause a crater-like depression on the surface of the MgO bath. The circulation of the high temperature air under the electrode may enhance the arc efficiency, especially for a shorter arc.展开更多
基金the National Natural Science Foundation of China (496742 4140 0 740 3 9) and the Research Fund forthe Doctoral Program of Higher Education in China
文摘THe effects of strong convection electric field on the electron density in the auroral ionosphericF-region have been simulated numerically by means of a physical model. It is found that an enhancement of electric field directed west-northward in post-noon or west-southward in pre-noon results in an ionization depletion with its maximum at altitudes 40–50 km higher than that of theF 2 peak. When the enhanced electric field lasts for 45 min and has a maximum about 32 mV/m, the resulted ionization depletions reach their maximum at the time just ~10 min behind the time when the convection electric field and ion temperature enhancements reach their maximum. This is consistent well with EISCAT observations. The magnitudes of the percentage ionization depletions and their recovery time are dependent not only on the intensity of the electric field, but also on the diurnal variation phase of the background electron density.
基金supported by the National Natural Science Foundation of China(Nos.50572006 and 50632010)
文摘The process of 180°domain switching in PbTiO_3 single crystal under an antiparallel electric field was investigated by the three-dimensional phase field simulation,especially the effect of electric field on the type and duration of domain switching.It is found that the polarization reversal of domains takes place under an antiparallel electric field in PbTiO_3 single crystal.The results of the phase field simulation indicate that there is only 90°domain switching under a weak electric field.With the rise of the electric field,180°domain switching appears.If the electric field is strengthened further,90°domain switching disappears and the duration of domain switching is shortened.
基金Project supported by the National Natural Science of China(Grant Nos.41527804 and 41774169)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB 41000000)the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(Grant No.QYZDJSSW-DQC010).
文摘Reconnection electric field is a key element of magnetic reconnection.It quantifies the change of magnetic topology and the dissipation of magnetic energy.In this work,two-dimensional(2D)particle-in-cell(PIC)simulations are performed to study the growth of the reconnection electric field in the electron diffusion region(EDR)during magnetic reconnection with a guide field.At first,a seed electric field is produced due to the excitation of the tearing-mode instability.Then,the reconnection electric field in the EDR,which is dominated by the electron pressure tensor term,suffers a spontaneous growth stage and grows exponentially until it saturates.A theoretical model is also proposed to explain such a kind of growth.The reconnection electric field in the EDR is found to be directly proportional to the electron outflow speed.The time derivative of electron outflow speed is proportional to the reconnection electric field in the EDR because the outflow is formed after the inflow electrons are accelerated by the reconnection electric field in the EDR and then directed away along the outflow direction.This kind of reinforcing process at last leads to the exponential growth of the reconnection electric field in the EDR.
文摘The flowing behavior of liquid slag has an important effect on the heat efficiency, recovery ratio ofvaluable metals and life span of the electric cleaning furnace. The velocity procedure using "κ-ε" model wasdeveloped under the cylindrical coordinate system. The procedure is used to calculate the velocity field ofmolten slag. The forces acting on molten slag were analyzed. The calculating method of electromagnetic forcewas described. The discrete equations, which were solved by using SIMPLE algorithm, were generated bymeans of interlace grids and control volume. The boundary layers near the solid wall were treated as wallfunction. The velocity distribution is obtained. The results show that the velocity of molten slag varies withdifferent horizontal sections. There are six eddies in the surface layer of molten slag. A large circle is formedin the sections below the electrodes, while the longitudinal section includes two large circles around the electrode. The influences of the features of the velocity field on the operation in the electric cleaning furnace arediscussed in detail.
基金Supported by National Natural Science Foundation of China(40974094,41274159)
文摘A theoretical model of ionospheric electric fields at mid-and low-latitudes is developed.In the geomagnetic dipolar coordinate system,the ionospheric dynamo equations were solved,and the ionospheric electric potential and electric field were derived respectively.Major parameters for the model inputs,such as the neutral winds,the densities and temperatures of electron,ions and neutrals,are obtained from empirical models.The global ionospheric electrical potential and field at mid-and low-latitudes derived from our model are largely in agreement with the results presented by other authors and the empirical model.Using our model,it is found that the diurnal component of the HWM93 wind mainly contributed to the formation of the vertical electric field,while the semidiurnal component mainly contributed to the zonal electric field.Finally,by adjustment of the input F region winds and conductivities,most discrepancies between our model and the empirical one can be eliminated,and it is proved that the F region dynamo is the most significant contribution to the electric fields.
基金Project supported by National Natural Science Foundation of China(Grant No. 20276055)
文摘Molecular dynamics simulations of liquid water were performed at 258 K and density of 1.0 g/cm^3 under different strengths of an external electric field, ranging from 0 to 8.0×10^9V/m, to investigate the influence of an external field on structural and dynamic properties of water. The flexible simple point charge model is used for water molecules. An enhancement of the water hydrogen bond structure with increasing strength of the electric field has been deduced from the radial distribution functions and the analysis of hydrogen bond structure. With increasing field strength, water system has a more perfect structure, which is shnilar to ice structure. However, the electrofreezing phenomenon of liquid water has not been detected because of a too large self-diffusion coefficient. The self-diffusion coefficient decreases remarkably with increasing strength of electric field, and the self-diffusion coefficient is anisotropic.
基金Project(61273187)supported by the National Natural Science Foundation of ChinaProject(61321003)supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China
文摘Region partition(RP) is the key technique to the finite element parallel computing(FEPC),and its performance has a decisive influence on the entire process of analysis and computation.The performance evaluation index of RP method for the three-dimensional finite element model(FEM) has been given.By taking the electric field of aluminum reduction cell(ARC) as the research object,the performance of two classical RP methods,which are Al-NASRA and NGUYEN partition(ANP) algorithm and the multi-level partition(MLP) method,has been analyzed and compared.The comparison results indicate a sound performance of ANP algorithm,but to large-scale models,the computing time of ANP algorithm increases notably.This is because the ANP algorithm determines only one node based on the minimum weight and just adds the elements connected to the node into the sub-region during each iteration.To obtain the satisfied speed and the precision,an improved dynamic self-adaptive ANP(DSA-ANP) algorithm has been proposed.With consideration of model scale,complexity and sub-RP stage,the improved algorithm adaptively determines the number of nodes and selects those nodes with small enough weight,and then dynamically adds these connected elements.The proposed algorithm has been applied to the finite element analysis(FEA) of the electric field simulation of ARC.Compared with the traditional ANP algorithm,the computational efficiency of the proposed algorithm has been shortened approximately from 260 s to 13 s.This proves the superiority of the improved algorithm on computing time performance.
文摘The electric field intensity (EFI) is important characteristic quantity for evaluating the internal insulation state of cable joints. Based on finite element method, this paper proposes two EFI research methods, field-circuit coupling method and equivalent circuit method. The average EFI of the inner surface of the outer semi-conducting shield can be calculated from the current in the measuring circuit. The relative error between these two methods is about 15%, which roughly proves the consistency of the two methods. Further practical application research enables online monitoring of cable joints.
文摘For the studies in the field of high voltage power transmission, this paper has adopted the method of finite element node potential, and put forward two kinds of high pressure sensor-fixture modeling scheme for the sensor-fixture of the high voltage side, the simulation analysis shows that the sensor-fixture surface should be smooth, and should not appear the conclusion of edges and corners. While through establishing the four clamps assembly optimized model, and simulates the strain gages, fixtures and conductor surface field strength and electric field distribution in the model as a whole in turn, this paper Finally got the optimal size of fixture structure and assembly of each part reasonable location layout.
基金National Natural Science Foundation of China(No.51867013)。
文摘The installed porcelain insulators on existing railway lines in China are prone to“snow flash”in winter.In order to prevent the occurrence of“snow flash”and improve the reliability of the insulators,a composite-porcelain insulator is designed.A multi-physics coupling simulation model is built based on numerical simulation methods of the electromagnetic field theory and computational fluid dynamics.Taking average electric field intensity on the surface of the insulator as the characteristic parameter of the electric field distortion degree and the snow crystal collision coefficient and distribution coefficient as the characteristic parameter of snow crystal deposition,the characteristics of snow crystal deposition under different wind speeds and wind direction angles and the electric field characteristics under two snow cover types are analyzed.The simulation results show that the average electric field intensity of composite-porcelain insulators is 10.4%and 13.8%,respectively,lower than that of porcelain insulators in vertical and horizontal wind snow covers,which can effectively reduce the degree of electric field distortion.The collision coefficient of snow crystals on the surface of the composite-porcelain insulator sheds is 16.0%higher than that of the porcelain insulator,and the collision coefficient of the trunk and the fittings are lower 20.2%and 11.9%than that of the porcelain insulator.There is almost no change in the distribution coefficient of the insulator sheds.
文摘The study of the electric field around a surge arrester is useful for design procedures and diagnostic tests. The current work com- putes the electric field around a medium voltage gapless surge arrester using 2D and 3D representation of the arrester. The 2D simulation design, which is described in IEC 60099-4 Standard, cannot include the non symmetrical parts of the arrester geometry and the test arrange- ment. 3D simulation procedures have the advantage that takes into account these asymmetries, giving more accurate results for each measurement position. In order to confirm the suitability of the created models, the simulation results of the electric field, using the 2D and 3D edition of PC Opera, are compared with recorded measurements, which are obtained in laboratory using appropriate calibrated field meters.
基金Project Supported by National Natural Science Foundation of China(90510015).
文摘The choice of the UHV lines depends on surface electric field of the bundle conductors.Based on existing calculation methods,the optimized charge simulation method is used to calculate the conductors' surface electrical field of±800 kV UHVDC transmission lines in this paper.During calculation,the offset distance is set as the variance of the objective function,the position and the quantity of the simulation charges are optimized with the gold section method,and the surface electrical field is calculated when the charge is in the optimal position.The result shows that the distribution of the surface electrical field and its maximal value can be calculated accurately with this method,although less number of simulation charges is used in this proposed method and the calculation is simple.
文摘The PARASOL code and the simulation by using PARASOL are introduced briefly. The PARASOL code with particle-in-cell (PIC) method and binary collision model was developed in JAERI and JAEA. Simulations using PARASOL code were carried out in order to investigate the power and particle control with diveror system in fusion reactors. The one-dimensional (1D) version of PARASOL was adopted to investigate the Bohm criterion, the supersonic flow, the SOL heat conduction, and so on. The heat propagation due to edge localized mode (ELM) was studied with the 1D-dynamic PARASOL. The two-dimensional version of PARASOL for the whole tokamak plasma including scrape-off-layer (SOL)-divertor region was useful for simulating the SOL flow pattern, the electric field formation etc. Based on PARASOL simulation results, improved physics modeling for the fluid simulation was built up.
文摘The electric field induced Lyman-a emission diagnostic aims to provide a non intrusive and precise measurement of the electric field in plasma, using a beam of hydrogen atoms prepared in the metastable 2s state. The metastable particles are obtained by means of a proton beam extracted from a hydrogen plasma source, and neutralised by interaction with vaporised caesium. When a 2s atom enters a region where an electric field is present, it undergoes a transition to the 2p state (Stark mixing). It then quickly decays to the ground level, emitting Lyman-a radiation, which is collected by a photomultiplier. The 2s → 2p transition rate is proportional to the square of the magnitude of the electric field, and depends on the field oscillation frequency (with peaks around l GHz). By measuring the intensity of the Lyman-a radiation emitted by the beam it is possible to determine the magnitude of the field in a defined region. In this work, an analysis of the behaviour of the diagnostic under static or radiofrequency electric field is presented. Electric field simulations obtained with a finite element solver of Maxwell equations, combined with theoretical calculations of the Stark mixing transition rate, are used to develop a model for the interpretation of photomultiplier data. This method shows good agreement with experimental results for the static field case, and allows to measure the field magnitude for the oscillating case.
基金The project supported by the National Natural Science Foundation of China (No. 10075048)
文摘This paper explores the patterns of influence of the negative radial electric field on the drift displacement and trajectory of charged particles, for it is essential for further investigation into the transitional mechanism of L-H Mode. In the light of superposition between the poloidal velocity of charged particles and the E × B drift caused by the negative radial electric field, the paper offers a theoretical analysis and value simulations. Under the action of different radial electric fields, results have been obtained in regard to changes in the velocity of charged particles (mainly ions), patterns of changes in drift displacement, regional change of banana particles, and features of transition and change between trajectories of transiting particles and banana particles.
文摘Molecular dynamics simulation was carried out to study the behavior of liquid 1,2-dichloroethane molecules under external electric fields including direct current field, alternating current field and positive-half-period cosin field. The maximum applied field strength was 10^8 V/m , the maximum frequency of the alternating current field and that of the positive-half-period cosine field was 10^12 Hz . The simulation revealed that the field type and field strength act on the population of the molecular configuration. In the strong direct current field, all trans forms converted completely into gauche forms. Order parameter and the correlation of the system torsion angle were also investigated. The results suggested that these two dynamical parameters depended also on the field type and the field strength. The maximum of order parameter was found to be at 0.6in the strong direct current field.
基金Science and Technology Project of State Grid Corporation(GY7111053)[www.sgcc.com.cn]。
文摘When separated water droplets condense on the surface of a composite insulator,the electrical field on the insulator surface is distorted.In turn,such distortions change the trajectories of pollution particles.In this study,the COMSOL software is used to simulate such a process for the FXBW4-10/100 composite insulator with or without water droplets condensation under a 10 kV DC voltage.The influence of the wind speed and particles concentration on the contamination characteristics of the considered 110 kV insulator is analyzed.The results show that:1)in the presence of water droplets on the insulator surface,the ratio of electrical field force and gravity acting on the particles is large;2)the contamination on the insulator surface increases with the wind speed;3)when the wind speed is small,the relationship between the contamination amount and the pollution concentration is essentially linear.
文摘The present work introduces a mathematical model for ionic fluid that flows under the effect of both pulsating pressure and axial electromagnetic field. The fluid is treated as a Newtonian fluid applying Navier-Stokes equation. The fluid is considered as a neutral mixture of positive and negative ions. The effect of axial electric field is investigated to determine velocity profiles. Hydroelectric equation of the flow is deduced under dc and ac external electric field. Hence the effect of applied frequency (0-1 GHz) and amplitude (10-350 V/m) is illustrated. The ultimate goal is to approach the problem of EMF field interaction with blood flow. The applied pressure waveform is represented as such to simulate the systolic-diastolic behavior. Simulation was carried out using Maple software using blood plasma parameters; hence velocity profiles under various conditions are reported.
文摘Myoglobin has important biological functions in storing and transporting small diatomic molecules in human body. Two possible orientations of carbon monoxide (CO) in the heme distal pocket (named as BI and B2 states) of myoglobin have been experimentally indicated. In this study, ab initio quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulation of CO in myoglobin was carried out to investigate the two possible B states. Our results demonstrate that the B1 and B2 states correspond to Fe... CO (with carbon atom closer to iron center of heme) and Fe... OC (with oxygen atom closer to Fe), by comparing with the experimental infrared spectrum. QM electrostatic polarization effect on CO brought from the protein and solvent environment is the main driving force, which anchors CO in two distinctive orientations and hinders its rotation. The calculated vibrational frequency shift between the state B1 and B2 is 13.1 cm-1, which is in good agreement with experimental value of 11.5 cm-1. This study also shows that the electric field produced by the solvent plays an important role in assisting protein functions by exerting directional electric field at the active site of the protein, From residue-based electric field decomposition, several residues were found to have most contributions to the total electric field at the CO center, including a few charged residues and three adjacent uncharged polar residues (namely, HIS64, ILE107, and PHE43). This study provides new physical insights on rational design of enzyme with higher electric field at the active site.
基金supported by the National High Technology Research and Development Program of China (No. 2008AA03A325)
文摘A three dimensional steady-state magnetohydrodynamic model is developed for the arc plasma in a DC submerged electric arc furnace for the production of fused MgO. The arc is generated in a small semi-enclosed space formed by the graphite electrode, the molten bath and unmelted raw materials. The model is first used to solve a similar problem in a steel making furnace, and the calculated results are found to be in good agreement with the published measurements. The behavior of arcs with different arc lengths is also studied in the furnace for MgO production. From the distribution of the arc pressure on the bath surface it is shown that the arc plasma impingement is large enough to cause a crater-like depression on the surface of the MgO bath. The circulation of the high temperature air under the electrode may enhance the arc efficiency, especially for a shorter arc.