期刊文献+
共找到17,635篇文章
< 1 2 250 >
每页显示 20 50 100
Constructing Built-In Electric Fields with Semiconductor Junctions and Schottky Junctions Based on Mo-MXene/Mo-Metal Sulfides for Electromagnetic Response 被引量:3
1
作者 Xiaojun Zeng Xiao Jiang +2 位作者 Ya Ning Yanfeng Gao Renchao Che 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期453-473,共21页
The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave(EMW)absorption materials.However,the loss mechanism in traditional heterost... The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave(EMW)absorption materials.However,the loss mechanism in traditional heterostructures is relatively simple,guided by empirical observations,and is not monotonous.In this work,we presented a novel semiconductor-semiconductor-metal heterostructure sys-tem,Mo-MXene/Mo-metal sulfides(metal=Sn,Fe,Mn,Co,Ni,Zn,and Cu),including semiconductor junctions and Mott-Schottky junctions.By skillfully combining these distinct functional components(Mo-MXene,MoS_(2),metal sulfides),we can engineer a multiple heterogeneous interface with superior absorption capabilities,broad effective absorption bandwidths,and ultrathin matching thickness.The successful establishment of semiconductor-semiconductor-metal heterostructures gives rise to a built-in electric field that intensifies electron transfer,as confirmed by density functional theory,which collaborates with multiple dielectric polarization mechanisms to substantially amplify EMW absorption.We detailed a successful synthesis of a series of Mo-MXene/Mo-metal sulfides featuring both semiconductor-semiconductor and semiconductor-metal interfaces.The achievements were most pronounced in Mo-MXene/Mo-Sn sulfide,which achieved remarkable reflection loss values of-70.6 dB at a matching thickness of only 1.885 mm.Radar cross-section calculations indicate that these MXene/Mo-metal sulfides have tremendous potential in practical military stealth technology.This work marks a departure from conventional component design limitations and presents a novel pathway for the creation of advanced MXene-based composites with potent EMW absorption capabilities. 展开更多
关键词 Semiconductor-semiconductor-metal heterostructure Semiconductor junctions Mott-Schottky junctions Built-in electric field Electromagnetic wave absorption
下载PDF
Effects of vacancy and external electric field on the electronic properties of the MoSi_(2)N_(4)/graphene heterostructure 被引量:1
2
作者 梁前 罗祥燕 +3 位作者 钱国林 王远帆 梁永超 谢泉 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期542-550,共9页
Recently,the newly synthesized septuple-atomic layer two-dimensional(2D)material MoSi_(2)N_(4)(MSN)has attracted attention worldwide.Our work delves into the effect of vacancies and external electric fields on the ele... Recently,the newly synthesized septuple-atomic layer two-dimensional(2D)material MoSi_(2)N_(4)(MSN)has attracted attention worldwide.Our work delves into the effect of vacancies and external electric fields on the electronic properties of the MSN/graphene(Gr)heterostructure using first-principles calculation.We find that four types of defective structures,N-in,N-out,Si and Mo vacancy defects of monolayer MSN and MSN/Gr heterostructure are stable in air.Moreover,vacancy defects can effectively modulate the charge transfer at the interface of the MSN/Gr heterostructure as well as the work function of the pristine monolayer MSN and MSN/Gr heterostructure.Finally,the application of an external electric field enables the dynamic switching between n-type and p-type Schottky contacts.Our work may offer the possibility of exceeding the capabilities of conventional Schottky diodes based on MSN/Gr heterostructures. 展开更多
关键词 MoSi_(2)N_(4) vacancy defects external electric field Schottky contacts
下载PDF
HIGH PERFORMANCE ELECTRIC FIELD MICRO SENSOR WITH COMBINED DIFFERENTIAL STRUCTURE 被引量:7
3
作者 Wen Xiaolong Peng Chunrong +4 位作者 Fang Dongming Yang Pengfei Chen Bo Zheng Fengjie Xia Shanhong 《Journal of Electronics(China)》 2014年第2期143-150,共8页
This paper presents a high performance electric field micro sensor with combined differential structure.The sensor consists of two backward laid micro-machined chips,each packaged by polymer and metal.The novel combin... This paper presents a high performance electric field micro sensor with combined differential structure.The sensor consists of two backward laid micro-machined chips,each packaged by polymer and metal.The novel combined differential structure effectively reduces various environmental affections,such as thermal drift,humidity drift and electrostatic charge accumulation.The sensor is tested in near-ground place as well as balloon-borne sounding.In different weather conditions,the measurement results showed good agreement with those of the commercial electric field mill. 展开更多
关键词 Micro-Electro-Mechanical System(MEMS) electric field sensor Atmospheric electric field Differential structure
下载PDF
A new electric field mill array with each of the mill’s rotor controlled precisely by a GPS module:Equipment and initial results
4
作者 Kozo Yamashita Hironobu Fujisaka +4 位作者 DaoHong Wang Hiroyuki Iwasaki Kazuo Yamamoto Koichiro Michimoto Masashi Hayakawa 《Earth and Planetary Physics》 EI CAS CSCD 2024年第2期423-435,共13页
We have newly designed an electrostatic sensor,called an electric field mill(EFM),to simplify the estimation of the charge position and charge amount transferred by lightning discharges.It is necessary for this remote... We have newly designed an electrostatic sensor,called an electric field mill(EFM),to simplify the estimation of the charge position and charge amount transferred by lightning discharges.It is necessary for this remote estimation of the transferred charge to measure electric field changes caused by charge loss at the time of a lightning strike at multiple locations.For multiple-station measurement of electric field changes,not only speed but also phase for exposure and shielding of the sensing plates inside each EFM of the array should be synchronized to maintain the sensitivities of the deployed instruments.Currently,there is no such EFM with specified speed and phase control performance of the rotary part.Thus,we developed a new EFM in which the rotary mechanism was controlled consistently to within 3%error by a GPS module.Five EFMs had been distributed in the Hokuriku area of Japan during the winter season of 2022-2023 for a test observation.Here we describe the design and a simple calibration method for our new EFM array.Data analysis method based on the assumption of a simple monopole charge structure is also summarized.For validation,locations of assumed point charges were compared with three-dimensional lightning mapping data estimated by radio observations in the MF-HF bands.Initial results indicated the validity to estimate transferred charge amounts and positions of winter cloud-to-ground lightning discharges with our new EFM array. 展开更多
关键词 LIGHTNING electrostatic field electric field mill electric field change
下载PDF
Superposition of dual electric fields in covalent organic frameworks for efficient photocatalytic hydrogen evolution
5
作者 Chao Li Shuo Wang +8 位作者 Yuan Liub Xihe Huang Yan Zhuang Shuhong Wu Ying Wang Na Wen Kaifeng Wu Zhengxin Ding Jinlin Long 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第8期164-175,共12页
Covalent organic frameworks(COFs)are promising materials for converting solar energy into green hydrogen.However,limited charge separation and transport in COFs impede their application in the photocatalytic hydrogen ... Covalent organic frameworks(COFs)are promising materials for converting solar energy into green hydrogen.However,limited charge separation and transport in COFs impede their application in the photocatalytic hydrogen evolution reaction(HER).In this study,the intrinsically tunable internal bond electric field(IBEF)at the imine bonds of COFs was manipulated to cooperate with the internal molecular electric field(IMEF)induced by the donor-acceptor(D-A)structure for an efficient HER.The aligned orientation of IBEF and IMEF resulted in a remarkable H_(2) evolution rate of 57.3 mmol·g^(-1)·h^(-1)on TNCA,which was approximately 520 times higher than that of TCNA(0.11 mmol·g^(-1)·h^(-1))with the opposing electric field orientation.The superposition of the dual electric fields enables the IBEF to function as an accelerating field for electron transfer,kinetically facilitat-ing the migration of photogenerated electrons from D to A.Furthermore,theoretical calculations indicate that the inhomogeneous charge distribution at the C and N atoms in TNCA not only pro-vides a strong driving force for carrier transfer but also effectively hinders the return of free elec-trons to the valence band,improving the utilization of photoelectrons.This strategy of fabricating dual electric fields in COFs offers a novel approach to designing photocatalysts for clean energy synthesis. 展开更多
关键词 Covalent organic framework Internal molecular electric field Internal bond electric field PHOTOCATALYSIS Hydrogen evolution
下载PDF
Electric field and force characteristic of dust aerosol particles on the surface of high-voltage transmission line
6
作者 刘滢格 李兴财 +2 位作者 王娟 马鑫 孙文海 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期368-378,共11页
High-voltage transmission lines play a crucial role in facilitating the utilization of renewable energy in regions prone to desertification. The accumulation of atmospheric particles on the surface of these lines can ... High-voltage transmission lines play a crucial role in facilitating the utilization of renewable energy in regions prone to desertification. The accumulation of atmospheric particles on the surface of these lines can significantly impact corona discharge and wind-induced conductor displacement. Accurately quantifying the force exerted by particles adhering to conductor surfaces is essential for evaluating fouling conditions and making informed decisions. Therefore, this study investigates the changes in electric field intensity along branched conductors caused by various fouling layers and their resulting influence on the adhesion of dust particles. The findings indicate that as individual particle size increases, the field strength at the top of the particle gradually decreases and eventually stabilizes at approximately 49.22 k V/cm, which corresponds to a field strength approximately 1.96 times higher than that of an unpolluted transmission line. Furthermore,when particle spacing exceeds 15 times the particle size, the field strength around the transmission line gradually decreases and approaches the level observed on non-adhering surface. The electric field remains relatively stable. In a triangular arrangement of three particles, the maximum field strength at the tip of the fouling layer is approximately 1.44 times higher than that of double particles and 1.5 times higher compared to single particles. These results suggest that particles adhering to the transmission line have a greater affinity for adsorbing charged particles. Additionally, relevant numerical calculations demonstrate that in dry environments, the primary adhesion forces between particles and transmission lines follow an order of electrostatic force and van der Waals force. Specifically, at the minimum field strength, these forces are approximately74.73 times and 19.43 times stronger than the gravitational force acting on the particles. 展开更多
关键词 high-voltage current electric field aerosol particles force characteristic
下载PDF
Coexisting fast–slow dendritic traveling waves in a 3D-array electric field coupled neuronal network
7
作者 魏熙乐 任泽宇 +2 位作者 卢梅丽 樊亚琴 常思远 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期614-626,共13页
Coexistence of fast and slow traveling waves without synaptic transmission has been found in hhhippocampal tissues,which is closely related to both normal brain activity and abnormal neural activity such as epileptic ... Coexistence of fast and slow traveling waves without synaptic transmission has been found in hhhippocampal tissues,which is closely related to both normal brain activity and abnormal neural activity such as epileptic discharge. However, the propagation mechanism behind this coexistence phenomenon remains unclear. In this paper, a three-dimensional electric field coupled hippocampal neural network is established to investigate generation of coexisting spontaneous fast and slow traveling waves. This model captures two types of dendritic traveling waves propagating in both transverse and longitude directions: the N-methyl-D-aspartate(NMDA)-dependent wave with a speed of about 0.1 m/s and the Ca-dependent wave with a speed of about 0.009 m/s. These traveling waves are synaptic-independent and could be conducted only by the electric fields generated by neighboring neurons, which are basically consistent with the in vitro data measured experiments. It is also found that the slow Ca wave could trigger generation of fast NMDA waves in the propagation path of slow waves whereas fast NMDA waves cannot affect the propagation of slow Ca waves. These results suggest that dendritic Ca waves could acted as the source of the coexistence fast and slow waves. Furthermore, we also confirm the impact of cellular spacing heterogeneity on the onset of coexisting fast and slow waves. The local region with decreasing distances among neighbor neurons is more liable to promote the onset of spontaneous slow waves which, as sources, excite propagation of fast waves. These modeling studies provide possible biophysical mechanisms underlying the neural dynamics of spontaneous traveling waves in brain tissues. 展开更多
关键词 hippocampal network EPILEPTIFORM dendritic oscillation traveling wave electric field coupling
下载PDF
Influence of filler characteristics on particle removal in fluid catalytic cracking slurry under an alternating electric field
8
作者 Qiang Li Hui-Zhen Yang +3 位作者 Can Yang Qing-Zhu Qiu Wei-Wei Xu Zhao-Zeng Liu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期2102-2111,共10页
The characteristics of the packing material under an alternating electric field are an important factor in the removal of FCCS particles.In this study,the electric field distribution of a separation unit consisting of... The characteristics of the packing material under an alternating electric field are an important factor in the removal of FCCS particles.In this study,the electric field distribution of a separation unit consisting of packed spheres under an alternating electric field is simulated,and the movement mechanism of catalyst particles is analysed.An"effective contact point"model is derived to predict the adsorption of filler contact points on catalyst particles under the alternating electric field,and the model is validated by simulations and experiments.The numerical calculation and experimental results indicate that the electrical properties of the filler spheres,the filler angleθ,and the frequency f of the alternating electric field affect the adsorption of catalyst particles.As the frequency of the electric field increases,the particle removal efficiency of the high-conductivity filler(silicon carbide)increases and then settles,and the separation efficiency of the low-conductivity filler(glass,zirconia)is not sensitive to the change in electric field frequency. 展开更多
关键词 Fluid catalyticcracking slurry(FCCS) PARTICLE AC electric field FILLERS REMOVAL
下载PDF
Effect of applied electric fields on supralinear dendritic integration of interneuron
9
作者 樊亚琴 魏熙乐 +1 位作者 卢梅丽 伊国胜 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期84-95,共12页
Evidences show that electric fields(EFs)induced by the magnetic stimulation could modulates brain activities by regulating the excitability of GABAergic interneuron.However,it is still unclear how and why the EF-induc... Evidences show that electric fields(EFs)induced by the magnetic stimulation could modulates brain activities by regulating the excitability of GABAergic interneuron.However,it is still unclear how and why the EF-induced polarization affects the interneuron response as the interneuron receives NMDA synaptic inputs.Considering the key role of NMDA receptor-mediated supralinear dendritic integration in neuronal computations,we suppose that the applied EFs could functionally modulate interneurons’response via regulating dendritic integration.At first,we build a simplified multi-dendritic circuit model with inhomogeneous extracellular potentials,which characterizes the relationship among EF-induced spatial polarizations,dendritic integration,and somatic output.By performing model-based singular perturbation analysis,it is found that the equilibrium point of fast subsystem can be used to asymptotically depict the subthreshold input–output(sI/O)relationship of dendritic integration.It predicted that EF-induced strong depolarizations on the distal dendrites reduce the dendritic saturation output by reducing driving force of synaptic input,and it shifts the steep change of sI/O curve left by reducing stimulation threshold of triggering NMDA spike.Also,the EF modulation prefers the global dendritic integration with asymmetric scatter distribution of NMDA synapses.Furthermore,we identify the respective contribution of EF-regulated dendritic integration and EF-induced somatic polarization to an action potential generation and find that they have an antagonistic effect on AP generation due to the varied NMDA spike threshold under EF stimulation. 展开更多
关键词 GABAergic interneuron electrical field supralinear dendritic integration action potential generation
下载PDF
Mild polarization electric field in ultra-thin BN-Fe-graphene sandwich structure for efficient nitrogen reduction
10
作者 Ziyuan Xiu Wei Mu +1 位作者 Xin Zhou Xiaojun Han 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第10期126-137,共12页
The electrocatalytic N_(2)reduction reaction(NRR)is expected to supersede the traditional Haber-Bosch technology for NH3 production under ambient conditions.The activity and selectivity of electrochemical NRR are rest... The electrocatalytic N_(2)reduction reaction(NRR)is expected to supersede the traditional Haber-Bosch technology for NH3 production under ambient conditions.The activity and selectivity of electrochemical NRR are restricted to a strong polarized electric field induced by the catalyst,correct electron transfer direction,and electron tunneling distance between bare electrode and active sites.By coupling the chemical vapor deposition method with the poly(methyl methacylate)-transfer method,an ultrathin sandwich catalyst,i.e.,Fe atoms(polarized electric field layer)sandwiched between ultrathin(within electron tunneling distance)BN(catalyst layer)and graphene film(conducting layer),is fabricated for electrocatalytic NRR.The sandwich catalyst not only controls the transfer of electrons to the BN surface in the correct direction under applied voltage but also suppresses hydrogen evolution reaction by constructing a neutral polarization electric field without metal exposure.The sandwich electrocatalyst NRR system achieve NH3 yield of 8.9μg h^(−1)cm^(−2)and Faradaic Efficiency of 21.7%.The N_(2)adsorption,activation,and polarization electric field changes of three sandwich catalysts(BN-Fe-G,BN-Fe-BN,and G-Fe-G)during the electrocatalytic NRR are investigated by experiments and density functional theory simulations.Driven by applied voltage,the neutral polarized electric field induced by BN-Fe-G leads to the high activity of electrocatalytic NRR. 展开更多
关键词 Ultra-thin BN Fe doping BN-Fe-graphene Mild polarization electric field Nitrogen reduction reaction
下载PDF
Extending microwave-frequency electric-field detection through single transmission peak method
11
作者 刘青 陈进湛 +6 位作者 王赫 张杰 阮伟民 伍国柱 郑顺元 罗景庭 宋振飞 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期417-423,共7页
The strength of microwave(MW)electric field can be observed with high precision by using the standard electromagnetically induced transparency and Aulter–Towns(EIT-AT)technique,when its frequency is resonant or nearl... The strength of microwave(MW)electric field can be observed with high precision by using the standard electromagnetically induced transparency and Aulter–Towns(EIT-AT)technique,when its frequency is resonant or nearly-resonant with the Rydberg transition frequency.As the detuning of MW field increases,one of the transmission peaks(single peak)is easier to measure due to its increased amplitude.It can be found that the central symmetry point of the two transmission peaks f_(1/2)is only related to the detuning of MW field△_(MW)and central symmetry point f_(0)of resonant MW field,satisfying the relation f_(1/2)=△_(MW)/2+f_(0).Thus,we demonstrate a single transmission peak method that the MW E-field can be determined by interval between the position of single peak and f_(1/2).We use this method to measure continuous frequencies in a band from-200 MHz to 200 MHz of the MW field.The experimental results and theoretical analysis are presented to describe the effectiveness of this method.For 50 MHz<△_(MW)<200 MHz,this method solves the problem that the AT splitting cannot be measured by using the standard EIT-AT techniques or multiple atomic-level Rydberg atom schemes. 展开更多
关键词 microwave electric field Rydberg atom electromagnetically induced transparency(EIT) Aulter-Towns splitting
下载PDF
Oscillation of Dzyaloshinskii–Moriya interaction driven by weak electric fields
12
作者 陈润泽 曹安妮 +3 位作者 王馨苒 柳洋 杨洪新 赵巍胜 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期487-491,共5页
Dzyaloshinskii–Moriya interaction(DMI) is under extensive investigation considering its crucial status in chiral magnetic orders, such as Néel-type domain wall(DW) and skyrmions. It has been reported that the in... Dzyaloshinskii–Moriya interaction(DMI) is under extensive investigation considering its crucial status in chiral magnetic orders, such as Néel-type domain wall(DW) and skyrmions. It has been reported that the interfacial DMI originating from Rashba spin–orbit coupling(SOC) can be linearly tuned with strong external electric fields. In this work, we experimentally demonstrate that the strength of DMI exhibits rapid fluctuations, ranging from 10% to 30% of its original value, as a function of applied electric fields in Pt/Co/MgO heterostructures within the small field regime(< 10-2V/nm). Brillouin light scattering(BLS) experiments have been performed to measure DMI, and first-principles calculations show agreement with this observation, which can be explained by the variation in orbital hybridization at the Co/MgO interface in response to the weak electric fields. Our results on voltage control of DMI(VCDMI) suggest that research related to the voltage control of magnetic anisotropy for spin–orbit torque or the motion control of skyrmions might also have to consider the role of the external electric field on DMI as small voltages are generally used for the magnetoresistance detection. 展开更多
关键词 Dzyaloshinskii-Moriya interaction weak electric field control effect Rashba spin-orbit coupling interfacial orbital hybridization
下载PDF
Modulating charge separation and transfer for high-performance photoelectrodes via built-in electric field
13
作者 Houyan Cheng Peng Liu +3 位作者 Yuntao Cui Ru Ya Yuxiang Hu Jinshu Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1126-1146,共21页
Constructing a built-in electric field has emerged as a key strategy for enhancing charge separation and transfer,thereby improving photoelectrochemical performance.Recently,considerable efforts have been devoted to t... Constructing a built-in electric field has emerged as a key strategy for enhancing charge separation and transfer,thereby improving photoelectrochemical performance.Recently,considerable efforts have been devoted to this endeavor.This review systematically summarizes the impact of built-in electric fields on enhancing charge separation and transfer mechanisms,focusing on the modulation of built-in electric fields in terms of depth and orderliness.First,mechanisms and tuning strategies for built-in electric fields are explored.Then,the state-of-the-art works regarding built-in electric fields for modulating charge separation and transfer are summarized and categorized according to surface and interface depth.Finally,current strategies for constructing bulk built-in electric fields in photoelectrodes are explored,and insights into future developments for enhancing charge separation and transfer in high-performance photoelectrochemical applications are provided. 展开更多
关键词 photoelectrochemical water splitting bulk built-in electric field cation intercalation charge separation and transfer
下载PDF
The action mechanism of the work done by the electric field force on moving charges to stimulate the emergence of carrier generation/recombination in a PN junction
14
作者 Lingyun GUO Yizhan YANG +1 位作者 Wanli YANG Yuantai HU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第6期1001-1014,共14页
It is discovered that the product of the current and the electric field in a PN junction should be regarded as the rate of work(power)done by the electric field force on moving charges(hole current and electron curren... It is discovered that the product of the current and the electric field in a PN junction should be regarded as the rate of work(power)done by the electric field force on moving charges(hole current and electron current),which was previously misinterpreted as solely a Joule heating effect.We clarify that it is exactly the work done by the electric field force on the moving charges to stimulate the emergence of non-equilibrium carriers,which triggers the novel physical phenomena.As regards to Joule heat,we point out that it should be calculated from Ohm’s law,rather than simply from the product of the current and the electric field.Based on this understanding,we conduct thorough discussion on the role of the electric field force in the process of carrier recombination and carrier generation.The thermal effects of carrier recombination and carrier generation followed are incorporated into the thermal equation of energy.The present study shows that the exothermic effect of carrier recombination leads to a temperature rise at the PN interface,while the endothermic effect of carrier generation causes a temperature reduction at the interface.These two opposite effects cause opposite heat flow directions in the PN junction under forward and backward bias voltages,highlighting the significance of managing device heating phenomena in design considerations.Therefore,this study possesses referential significance for the design and tuning on the performance of piezotronic devices. 展开更多
关键词 piezoelectric semiconductor(PS) work done by electric field force thermal effect piezotronic device resistivity conductivity
下载PDF
Self-Adaptive and Electric Field-Driven Protective Layer with Anchored Lithium Deposition Enable Stable Lithium Metal Anode
15
作者 Ting Chen Luchao Yue +8 位作者 Guoqiang Shu Qing Yang Dong Wang Ruoyang Wang Xianyan Qiao Yan Sun Benhe Zhong Zhenguo Wu Xiaodong Guo 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期32-40,共9页
Lithium metal battery has great development potential because of its lowest electrochemical potential and highest theoretical capacity.However,the uneven deposition of Li^(+)flux in the process of deposition and strip... Lithium metal battery has great development potential because of its lowest electrochemical potential and highest theoretical capacity.However,the uneven deposition of Li^(+)flux in the process of deposition and stripping induces the vigorous growth of lithium dendrites,which results in severely battery performance degradation and serious safety hazards.Here,the tetragonal BaTiO3 polarized by high voltage corona was used to build an artificial protective layer with uniform positive polarization direction,which enables uniform Li^(+)flux.In contrast to traditional strategies of using protective layer,which can guide the uniform deposition of lithium metal.The ferroelectric protective layer can accurately anchor the Li^(+)and achieve bottom deposition of lithium due to the automatic adjustment of the electric field.Simultaneously,the huge volume changes caused by Li^(+)migration change of the lithium metal anode during charging and discharging is functioned to excite the piezoelectric effect of the protective layer,and achieve seamless dynamic tuning of lithium deposition/stripping.This dynamic effect can accurately anchor and capture Li^(+).Finally,the layer-modified Li anode enables reversible Li plating/stripping over 1500 h at 1 mA cm^(-2)and 50℃in symmetric cells.In addition,the assembled Li-S full cell exhibits over 300 cycles with N/P≈1.35.This work provides a new perspective on the uniform Li^(+)flux at the Li-anode interface of the artificial protective layer. 展开更多
关键词 dense plating/stripping process electric field ferroelectric materials lithium metal batteries solid electrolyte interphase
下载PDF
Internal electric field modulation by copper vacancy concentration of cuprous sulfide nanosheets for enhanced selective CO_(2) photoreduction
16
作者 Xian Shi Weidong Dai +4 位作者 Xiaoqian Li Yang Bai Qin Ren Yao Lei Xing'an Dong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期324-330,共7页
Although the internal electric field(IEF)of photocatalysts is acknowledged as a potent driving force for photocharge separation,modulating the IEF intensity to achieve enhanced photocatalytic performances remains a ch... Although the internal electric field(IEF)of photocatalysts is acknowledged as a potent driving force for photocharge separation,modulating the IEF intensity to achieve enhanced photocatalytic performances remains a challenge.Herein,cuprous sulfide nanosheets with different Cu vacancy concentration were employed to study IEF modulation and corresponding direct charge transfer.Among the samples,Cu_(1.8)S nanosheets possessed intensified IEF intensity compared with those of Cu_(2)S and Cu_(1.95)S nanosheets,suggesting that an enhanced IEF intensity could be achieved by introducing more Cu vacancies.This intensified IEF of Cu_(1.8)S nanosheets induced numerous photogenerated electrons to migrate to its surface,and the dissociative electrons were then captured by Cu vacancies,resulting in efficient charge separation spatially.In addition,the Cu vacancies on Cu_(1.8)S nanosheets accumulated electrons as active sites to lower the energy barrier of rate-determining step of CO_(2)photoreduction,leading to the selective conversion of CO_(2)to CO.Herein,the manipulation of IEF intensity through Cu vacancy concentration regulation of cuprous sulfide photocatalysts for efficient charge separation has been discussed,providing a scientific strategy to rationally improve photocata lytic performances for solar energy conversion. 展开更多
关键词 Internal electric field intensity Cuprous sulfide photocatalysts Cu vacancies Charge separation Selective CO_(2) photoreduction
下载PDF
Electrical structure identification of deep shale gas reservoir in complex structural area using wide field electromagnetic method
17
作者 Gu Zhi-Wen Li Yue-Gang +6 位作者 Yu Chang-Heng Zou Zhong-Ping Hu Ai-Guo Yin Xue-Bo Wang Qinag Ye Heng Tan Zhang-Kun 《Applied Geophysics》 SCIE CSCD 2024年第3期564-578,619,620,共17页
To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the con... To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the conventional electromagnetic method in exploration depth,precision,and accuracy,the large-depth and high-precision wide field electromagnetic method is applied to the complex structure test area of the Luochang syncline and Yuhe nose anticline in the southern Sichuan.The advantages of the wide field electromagnetic method in detecting deep,low-resistivity thin layers are demonstrated.First,on the basis of the analysis of physical property data,a geological–geoelectric model is established in the test area,and the wide field electromagnetic method is numerically simulated to analyze and evaluate the response characteristics of deep thin shale gas layers on wide field electromagnetic curves.Second,a wide field electromagnetic test is conducted in the complex structure area of southern Sichuan.After data processing and inversion imaging,apparent resistivity logging data are used for calibration to develop an apparent resistivity interpretation model suitable for the test area.On the basis of the results,the characteristics of the electrical structure change in the shallow longitudinal formation of 6 km are implemented,and the transverse electrical distribution characteristics of the deep shale gas layer are delineated.In the prediction area near the well,the subsequent data verification shows that the apparent resistivity obtained using the inversion of the wide field electromagnetic method is consistent with the trend of apparent resistivity revealed by logging,which proves that this method can effectively identify the weak response characteristics of deep shale gas formations in complex structural areas.This experiment,it is shown shows that the wide field electromagnetic method with a large depth and high precision can effectively characterize the electrical characteristics of deep,low-resistivity thin layers in complex structural areas,and a new set of low-cost evaluation technologies for shale gas target layers based on the wide field electromagnetic method is explored. 展开更多
关键词 complex tectonic area in southern Sichuan wide field electromagnetic method deep exploration shale gas reservoir electrical structure
下载PDF
VSe_(2)/V_(2)C heterocatalyst with built-in electric field for efficient lithium-sulfur batteries:Remedies polysulfide shuttle and conversion kinetics
18
作者 Yanwei Lv Lina Bai +7 位作者 Qi Jin Siyu Deng Xinzhi Ma Fengfeng Han Juan Wang Lirong Zhang Lili Wu Xitian Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期397-409,I0010,共14页
Lithium sulfur(Li-S)battery is a kind of burgeoning energy storage system with high energy density.However,the electrolyte-soluble intermediate lithium polysulfides(Li PSs)undergo notorious shuttle effect,which seriou... Lithium sulfur(Li-S)battery is a kind of burgeoning energy storage system with high energy density.However,the electrolyte-soluble intermediate lithium polysulfides(Li PSs)undergo notorious shuttle effect,which seriously hinders the commercialization of Li-S batteries.Herein,a unique VSe_(2)/V_(2)C heterostructure with local built-in electric field was rationally engineered from V_(2)C parent via a facile thermal selenization process.It exquisitely synergizes the strong affinity of V_(2)C with the effective electrocatalytic activity of VSe_(2).More importantly,the local built-in electric field at the heterointerface can sufficiently promote the electron/ion transport ability and eventually boost the conversion kinetics of sulfur species.The Li-S battery equipped with VSe_(2)/V_(2)C-CNTs-PP separator achieved an outstanding initial specific capacity of 1439.1 m A h g^(-1)with a high capacity retention of 73%after 100 cycles at0.1 C.More impressively,a wonderful capacity of 571.6 mA h g^(-1)was effectively maintained after 600cycles at 2 C with a capacity decay rate of 0.07%.Even under a sulfur loading of 4.8 mg cm^(-2),areal capacity still can be up to 5.6 m A h cm^(-2).In-situ Raman tests explicitly illustrate the effectiveness of VSe_(2)/V_(2)C-CNTs modifier in restricting Li PSs shuttle.Combined with density functional theory calculations,the underlying mechanism of VSe_(2)/V_(2)C heterostructure for remedying Li PSs shuttling and conversion kinetics was deciphered.The strategy of constructing VSe_(2)/V_(2)C heterocatalyst in this work proposes a universal protocol to design metal selenide-based separator modifier for Li-S battery.Besides,it opens an efficient avenue for the separator engineering of Li-S batteries. 展开更多
关键词 Li-S battery Shuttle effect Separator modifier VSe_(2)/V_(2)C heterostructure Built-in electric field
下载PDF
Two-dimensional investigation of characteristic parameters and their gradients for the self-generated electric and magnetic fields of laser-induced zirconium plasma
19
作者 Tayyaba SAJID Shazia BASHIR +2 位作者 Mahreen AKRAM Maira RAZZAQ Khaliq MAHMOOD 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第5期138-155,共18页
Two-dimensional diagnosis of laser-induced zirconium(Zr)plasma has been experimentally performed using the time-of-flight method by employing Faraday cups in addition to electric and magnetic probes.The characteristic... Two-dimensional diagnosis of laser-induced zirconium(Zr)plasma has been experimentally performed using the time-of-flight method by employing Faraday cups in addition to electric and magnetic probes.The characteristic parameters of laser-induced Zr plasma have been evaluated as a function of different laser irradiances ranging from 4.5 to 11.7 GW cm-2 at different axial positions of 1–4 cm with a fixed radial distance of 2 cm.A well-supporting correlation between the plume parameters and the laser-plasma-produced spontaneous electric and magnetic(E and B)fields was established.The measurements of the characteristic parameters and spontaneously induced fields were observed to have an increasing trend with the increasing laser irradiance.However,when increasing the spatial distance in both the axial and radial directions,the plasma parameters(electron/ion number density,temperature and kinetic energy)did not show either continuously increasing or decreasing trends due to various kinetic and dynamic processes during the spatial evolution of the plume.However,the E and B fields were observed to be always diffusing away from the target.The radial component of electron number densities remained higher than the axial number density component,whereas the axial ion number density at all laser irradiances and axial distances remained higher than the radial ion number density.The higher axial self-generated electric field(SGEF)values than radial SGEF values are correlated with the effective charge-separation mechanism of electrons and ions.The generation of a self-generated magnetic field is observed dominantly in the radial direction at increasing laser irradiance as compared to the axial one due to the deflection of fast-moving electrons and the persistence of two-electron temperature on the radial axis. 展开更多
关键词 Faraday cup axial and radial expansion space-charge effect laser-induced zirconium plasma two-electron temperature distribution self-generated electric and magnetic fields
下载PDF
Research on Total Electric Field Prediction Method of Ultra-High Voltage Direct Current Transmission Line Based on Stacking Algorithm
20
作者 Yinkong Wei Mucong Wu +3 位作者 Wei Wei Paulo R.F.Rocha Ziyi Cheng Weifang Yao 《Computer Systems Science & Engineering》 2024年第3期723-738,共16页
Ultra-high voltage(UHV)transmission lines are an important part of China’s power grid and are often surrounded by a complex electromagnetic environment.The ground total electric field is considered a main electromagn... Ultra-high voltage(UHV)transmission lines are an important part of China’s power grid and are often surrounded by a complex electromagnetic environment.The ground total electric field is considered a main electromagnetic environment indicator of UHV transmission lines and is currently employed for reliable long-term operation of the power grid.Yet,the accurate prediction of the ground total electric field remains a technical challenge.In this work,we collected the total electric field data from the Ningdong-Zhejiang±800 kV UHVDC transmission project,as of the Ling Shao line,and perform an outlier analysis of the total electric field data.We show that the Local Outlier Factor(LOF)elimination algorithm has a small average difference and overcomes the performance of Density-Based Spatial Clustering of Applications with Noise(DBSCAN)and Isolated Forest elimination algorithms.Moreover,the Stacking algorithm has been found to have superior prediction accuracy than a variety of similar prediction algorithms,including the traditional finite element.The low prediction error of the Stacking algorithm highlights the superior ability to accurately forecast the ground total electric field of UHVDC transmission lines. 展开更多
关键词 DC transmission line total electric field effective data multivariable outliers LOF algorithm Stacking algorithm
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部