The geometry effect of a vapor cell on the metrology of a microwave electric field is investigated. Based on the splitting of the electromagnetically induced transparency spectra of cesium Rydberg atoms in a vapor cel...The geometry effect of a vapor cell on the metrology of a microwave electric field is investigated. Based on the splitting of the electromagnetically induced transparency spectra of cesium Rydberg atoms in a vapor cell, high-resolution spatial distribution of the microwave electric field strength is achieved for both a cubic cell and a cylinder cell. The spatial distribution of the microwave field strength in two dimensions is measured with sub-wavelength resolution. The experimental results show that the shape of a vapor cell has a significant influence on the abnormal spatial distribution because of the Fabry-P6rot effect inside a vapor cell. A theoretical simulation is obtained for different vapor cell wall thicknesses and shows that a restricted wall thickness results in a measurement fluctuation smaller than 3% at the center of the vapor cell.展开更多
We calculated the uniform dielectric breakdown field strength of residual 30% CF3I/CO2 gas mixtures during the arc extinction process over the temperature range 300-3500 K at 0.1 MPa. The limiting reduced field streng...We calculated the uniform dielectric breakdown field strength of residual 30% CF3I/CO2 gas mixtures during the arc extinction process over the temperature range 300-3500 K at 0.1 MPa. The limiting reduced field strengths are decided by a balance of electron generation and loss based on chemical reactions estimated by the electron energy distribution function (EEDF), which employs the Boltzmann equation method with two-term expanding approximation in the steady-state Townsend (SST) condition. During the insulation recovery phase, the hot CF3I/CO2 gas mixtures have maximum dielectric strength at a temperature of about 1500 K. At room temperature 300 K, the electric strength after arc extinction (90.3 Td, 1 Td=10-21 V.m2) is only 38% of the original value before arc (234.9 Td). The adverse insulation recovery ability of CF3I/CO2 gas mixtures in arc extinction hinders its application in electric circuit breakers and other switchgears as an arc quenching and insulating medium.展开更多
Influence of the gassing materials, such as PA6, PMMA, and POM on the dielectric properties of air are investigated. In this work, the fundamental electron collision cross section data were carefully selected and vali...Influence of the gassing materials, such as PA6, PMMA, and POM on the dielectric properties of air are investigated. In this work, the fundamental electron collision cross section data were carefully selected and validated. Then the species compositions of the air–organic vapor mixtures were calculated based on the Gibbs free energy minimization. Finally, the Townsend ionization coefficient, the Townsend electron attachment coefficient and the critical reduced electric field strength were derived from the calculated electron energy distribution function by solving the Boltzmann transport equation. The calculation results indicated that H;O with large attachment cross sections has a great impact on the critical reduced electric field strength of the air–organic vapor mixtures. On the other hand, the vaporization of gassing materials can help to increase the dielectric properties of air circuit breakers to some degree.展开更多
Poly(methyl methacrylate) (PMMA) was used to wrap alumina siloxane sol through emulsion polymerization. A kind of suspensions with notable ER effect was produced by fully mixing the prepared microcapsule with silicon...Poly(methyl methacrylate) (PMMA) was used to wrap alumina siloxane sol through emulsion polymerization. A kind of suspensions with notable ER effect was produced by fully mixing the prepared microcapsule with silicon oil. Meanwhile a series of PMMA wrapped alumina-siloxane gel doped with rare earths was obtained and its ER effect was tested, like viscosity of different rare earth ion doped samples in different powder concentrations and at different temperatures, at the same time, leak current density and dielectric constant were measured. Results show that the ER effect of this suspension is remarkable, and its stability is much better. The condition of emulsion polymerization and the mechanism of effect are discussed.展开更多
A 4H-SiC power MOSFET with specific on-resistance of 3.4 mΩ·cm^2 and breakdown voltage exceeding 1.5 kV is designed and fabricated.Numerical simulations are carried out to optimize the electric field strength in...A 4H-SiC power MOSFET with specific on-resistance of 3.4 mΩ·cm^2 and breakdown voltage exceeding 1.5 kV is designed and fabricated.Numerical simulations are carried out to optimize the electric field strength in gate oxide and at the surface of the semiconductor material in the edge termination region.Additional n-type implantation in JFET region is implemented to reduce the specific on-resistance.The typical leakage current is less than 1μA at VDS=1.4 kV.Drain–source current reaches 50 A at VDS=0.75 V and VGS=20 V corresponding to an on-resistance of 15 mΩ.The typical gate threshold voltage is 2.6 V.展开更多
Based on Darcy's Law and the Helmholta-Smoluchowski equation, an imbibition velocity formula for the water phase with an electric field was deduced, showing that the imbibition velocity with an electric field is to v...Based on Darcy's Law and the Helmholta-Smoluchowski equation, an imbibition velocity formula for the water phase with an electric field was deduced, showing that the imbibition velocity with an electric field is to various extents not only related to the rock permeability and characteristic length, the fluid viscosity, the oil-water interface tension and the gravity of the imbibing brine, but also to the fluid dielectric permittivity, zeta potential, applied electric field direction, and strength. Imbibition experiments with electric fields that are different in direction and strength were conducted, showing that application of a positive electric field enhances the imbibition velocity and increases the imbibition recovery ratio, while application of a negative electric field reduces the imbibition velocity and decreases the imbibition recovery ratio. The imbibition recovery ratio with a positive electric field increases with the strength of the electric field, and the imbibition recovery ratio with a negative electric field is lower than that without an electric field.展开更多
Polyparapheneylene (PPP) was doped by CeCl 4 and FeCl 3, and then electrorheological (ER) suspensions were prepared by polymer powder with high dielectric constants and silicone oil. Under electric field, the change...Polyparapheneylene (PPP) was doped by CeCl 4 and FeCl 3, and then electrorheological (ER) suspensions were prepared by polymer powder with high dielectric constants and silicone oil. Under electric field, the change of viscosity, leakage current density and relative physical constants were measured. The relationships among electric field strength, particle concentration, viscosity and leakage current density were discussed. The speed of electrorheological response and the recovery time were studied and corresponding mechanisms were investigated.展开更多
A recurring challenge of a DC SF_(6)/N_(2)-filled GIS/GIL apparatus is the charge accumulation at DC stress.The conventional design rules and knowledge of AC spacers may not be applicable for this new type of apparatu...A recurring challenge of a DC SF_(6)/N_(2)-filled GIS/GIL apparatus is the charge accumulation at DC stress.The conventional design rules and knowledge of AC spacers may not be applicable for this new type of apparatus.A novel design rule is proposed considering the effect of accumulated charge on the threshold of electric field strength being resistant to the superposed voltage.A surface charge accumulation simulation model is introduced,and the key parameters in the simulation model are measured.In addition,an experimental platform for a 100 kV spacer flashover test is established.Spacer flashover tests under superimposed voltage with opposing polarities are carried out,and the withstanding voltage of the spacer is obtained.Finally,based on the proposed model,the threshold of the surface electric field strength(tangential component)on the DC spacer in SF_(6)/N_(2) mixed gases is discussed.For a reliable insulation design of a DC GIS/GIL apparatus filled with 0.7 MPa SF_(6)/N_(2),the threshold of surface electric field strength on the DC spacer is 12 kV/mm.The insulation design rule can be referenced in the design of a high-voltage DC SF_(6)/N_(2)-filled GIS/GIL apparatus.展开更多
Based on the data from the Medium-Energy Proton and Electron Detector (MEPED) onboard NOAA-17, 141 anomalies of a Chinese Sun-Synchronous satellite (SSO-X) that occurred between 02/01/2010 and 09/31/2012 were stud...Based on the data from the Medium-Energy Proton and Electron Detector (MEPED) onboard NOAA-17, 141 anomalies of a Chinese Sun-Synchronous satellite (SSO-X) that occurred between 02/01/2010 and 09/31/2012 were studied statistically. About 26 out of the 52 anomalies that occurred outside the South Atlantic Anomaly (SAA) were accompanied by energetic electron storms. Superposed Epoch Analysis (SEA) was used to analyze the properties of the anomalies and the dynamics of the space environments during these 26 events. Then, a Monte Carlo method was utilized to simulate the electron deposition and the interactions of the injected electrons with an aluminum shield and polyethylene dielectric. The average, median, and 75tb percentile values of the maximum electric field strength inside the dielectric were calculated. The results showed the tbl- lowing. (1) SSO-X anomalies are more likely to occur within the SAA, as 89 out of 141 anomalies (63%) occurred there. (2) Twenty-six of the anomalies that occurred outside the SAA during energetic electron storms were located near the outer boundaries of the outer radiation belts, and these were more frequent in the Southern Hemisphere than in the Northern Hemi- sphere. (3) Electron flux enhancements occurred around the failure time at all energy levels but were more profound in the lower energy channels. The maximum fluxes of electrons 〉30 keV, 〉100 keV, and 〉300 keV were 106, 3.5x10s, and 1.2×10^6 cm 2 s^-1 · sr ^-1, respectively. (4) The average, median, and 75th percentile values of the maximum electric field strengths inside the dielectric for the aforementioned 26 events remained in the range from 106 to 107 V/m for long time periods, which sug- gests that the 'potential hazards' of internal discharges cause SSO-X anomalies. The above results can provide useful infor- mation for the design and protection of sun-synchronous spacecraft.展开更多
Conductor corona performance is significant in the evaluation of electromagnetic environment for high voltage power transmission lines. The influence of artificial contaminated conductors on corona discharge was studi...Conductor corona performance is significant in the evaluation of electromagnetic environment for high voltage power transmission lines. The influence of artificial contaminated conductors on corona discharge was studied and turned out to be complicated. The ionized field strength on the corona cage was measured by field mill. Meanwhile, photos of corona plumes were photographed and grayed to quantitate the corona discharge intensity. Subsequently, a calculation model for equivalent electric field strength coefficient was established to evaluate the discharge intensity of conductors in coaxial cylindrical electrode. It could be found the computational results achieved an agreement with the observed experimental phenomena. By means of simulation results, a reasonable explanation was given to the finding that the closer the distance between the two protrusions was, the lower the corona discharge intensity and higher corona inception voltage of the conductors would be. In summary, the distributions of corona sources played an important role in the corona discharge and this work would provide an important reference for the evaluation of corona effects on the surface of contaminated conductors.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2017YFA03044200 and 2016YFF0200104)the National Natural Science Foundation of China(Grant Nos.91536110,61505099,and 61378013)the Fund for Shanxi“331 Project”Key Subjects Construction,China
文摘The geometry effect of a vapor cell on the metrology of a microwave electric field is investigated. Based on the splitting of the electromagnetically induced transparency spectra of cesium Rydberg atoms in a vapor cell, high-resolution spatial distribution of the microwave electric field strength is achieved for both a cubic cell and a cylinder cell. The spatial distribution of the microwave field strength in two dimensions is measured with sub-wavelength resolution. The experimental results show that the shape of a vapor cell has a significant influence on the abnormal spatial distribution because of the Fabry-P6rot effect inside a vapor cell. A theoretical simulation is obtained for different vapor cell wall thicknesses and shows that a restricted wall thickness results in a measurement fluctuation smaller than 3% at the center of the vapor cell.
基金supported by National Natural Science Foundation of China(No.10875093)
文摘We calculated the uniform dielectric breakdown field strength of residual 30% CF3I/CO2 gas mixtures during the arc extinction process over the temperature range 300-3500 K at 0.1 MPa. The limiting reduced field strengths are decided by a balance of electron generation and loss based on chemical reactions estimated by the electron energy distribution function (EEDF), which employs the Boltzmann equation method with two-term expanding approximation in the steady-state Townsend (SST) condition. During the insulation recovery phase, the hot CF3I/CO2 gas mixtures have maximum dielectric strength at a temperature of about 1500 K. At room temperature 300 K, the electric strength after arc extinction (90.3 Td, 1 Td=10-21 V.m2) is only 38% of the original value before arc (234.9 Td). The adverse insulation recovery ability of CF3I/CO2 gas mixtures in arc extinction hinders its application in electric circuit breakers and other switchgears as an arc quenching and insulating medium.
基金supported by the National Key Basic Research Program of China(973 Program)2015CB251002National Natural Science Foundation of China under Grant 51521065,51577145+1 种基金the Fundamental Research Funds for the Central UniversitiesShaanxi Province Natural Science Foundation 2013JM-7010
文摘Influence of the gassing materials, such as PA6, PMMA, and POM on the dielectric properties of air are investigated. In this work, the fundamental electron collision cross section data were carefully selected and validated. Then the species compositions of the air–organic vapor mixtures were calculated based on the Gibbs free energy minimization. Finally, the Townsend ionization coefficient, the Townsend electron attachment coefficient and the critical reduced electric field strength were derived from the calculated electron energy distribution function by solving the Boltzmann transport equation. The calculation results indicated that H;O with large attachment cross sections has a great impact on the critical reduced electric field strength of the air–organic vapor mixtures. On the other hand, the vaporization of gassing materials can help to increase the dielectric properties of air circuit breakers to some degree.
文摘Poly(methyl methacrylate) (PMMA) was used to wrap alumina siloxane sol through emulsion polymerization. A kind of suspensions with notable ER effect was produced by fully mixing the prepared microcapsule with silicon oil. Meanwhile a series of PMMA wrapped alumina-siloxane gel doped with rare earths was obtained and its ER effect was tested, like viscosity of different rare earth ion doped samples in different powder concentrations and at different temperatures, at the same time, leak current density and dielectric constant were measured. Results show that the ER effect of this suspension is remarkable, and its stability is much better. The condition of emulsion polymerization and the mechanism of effect are discussed.
基金supported by the National Science and Technology Major Project(No.2017YFB0102302)。
文摘A 4H-SiC power MOSFET with specific on-resistance of 3.4 mΩ·cm^2 and breakdown voltage exceeding 1.5 kV is designed and fabricated.Numerical simulations are carried out to optimize the electric field strength in gate oxide and at the surface of the semiconductor material in the edge termination region.Additional n-type implantation in JFET region is implemented to reduce the specific on-resistance.The typical leakage current is less than 1μA at VDS=1.4 kV.Drain–source current reaches 50 A at VDS=0.75 V and VGS=20 V corresponding to an on-resistance of 15 mΩ.The typical gate threshold voltage is 2.6 V.
基金supported by the National Key Basic Research Development Program of China (Grant No. 2002CCA00700)
文摘Based on Darcy's Law and the Helmholta-Smoluchowski equation, an imbibition velocity formula for the water phase with an electric field was deduced, showing that the imbibition velocity with an electric field is to various extents not only related to the rock permeability and characteristic length, the fluid viscosity, the oil-water interface tension and the gravity of the imbibing brine, but also to the fluid dielectric permittivity, zeta potential, applied electric field direction, and strength. Imbibition experiments with electric fields that are different in direction and strength were conducted, showing that application of a positive electric field enhances the imbibition velocity and increases the imbibition recovery ratio, while application of a negative electric field reduces the imbibition velocity and decreases the imbibition recovery ratio. The imbibition recovery ratio with a positive electric field increases with the strength of the electric field, and the imbibition recovery ratio with a negative electric field is lower than that without an electric field.
文摘Polyparapheneylene (PPP) was doped by CeCl 4 and FeCl 3, and then electrorheological (ER) suspensions were prepared by polymer powder with high dielectric constants and silicone oil. Under electric field, the change of viscosity, leakage current density and relative physical constants were measured. The relationships among electric field strength, particle concentration, viscosity and leakage current density were discussed. The speed of electrorheological response and the recovery time were studied and corresponding mechanisms were investigated.
基金supported in part by the National Basic Research Program of China(973 Program)(2014CB239500)Young Elite Scientists Sponsorship Program by CAST YESS20160004the Fundamental Research Funds for the Central Universities(2019MS006).
文摘A recurring challenge of a DC SF_(6)/N_(2)-filled GIS/GIL apparatus is the charge accumulation at DC stress.The conventional design rules and knowledge of AC spacers may not be applicable for this new type of apparatus.A novel design rule is proposed considering the effect of accumulated charge on the threshold of electric field strength being resistant to the superposed voltage.A surface charge accumulation simulation model is introduced,and the key parameters in the simulation model are measured.In addition,an experimental platform for a 100 kV spacer flashover test is established.Spacer flashover tests under superimposed voltage with opposing polarities are carried out,and the withstanding voltage of the spacer is obtained.Finally,based on the proposed model,the threshold of the surface electric field strength(tangential component)on the DC spacer in SF_(6)/N_(2) mixed gases is discussed.For a reliable insulation design of a DC GIS/GIL apparatus filled with 0.7 MPa SF_(6)/N_(2),the threshold of surface electric field strength on the DC spacer is 12 kV/mm.The insulation design rule can be referenced in the design of a high-voltage DC SF_(6)/N_(2)-filled GIS/GIL apparatus.
基金supported by the National Natural Science Foundation of China(Grant No.41421003)the Major Project of Chinese National Programs for Fundamental Research and Development(Grant No.2012CB825603)
文摘Based on the data from the Medium-Energy Proton and Electron Detector (MEPED) onboard NOAA-17, 141 anomalies of a Chinese Sun-Synchronous satellite (SSO-X) that occurred between 02/01/2010 and 09/31/2012 were studied statistically. About 26 out of the 52 anomalies that occurred outside the South Atlantic Anomaly (SAA) were accompanied by energetic electron storms. Superposed Epoch Analysis (SEA) was used to analyze the properties of the anomalies and the dynamics of the space environments during these 26 events. Then, a Monte Carlo method was utilized to simulate the electron deposition and the interactions of the injected electrons with an aluminum shield and polyethylene dielectric. The average, median, and 75tb percentile values of the maximum electric field strength inside the dielectric were calculated. The results showed the tbl- lowing. (1) SSO-X anomalies are more likely to occur within the SAA, as 89 out of 141 anomalies (63%) occurred there. (2) Twenty-six of the anomalies that occurred outside the SAA during energetic electron storms were located near the outer boundaries of the outer radiation belts, and these were more frequent in the Southern Hemisphere than in the Northern Hemi- sphere. (3) Electron flux enhancements occurred around the failure time at all energy levels but were more profound in the lower energy channels. The maximum fluxes of electrons 〉30 keV, 〉100 keV, and 〉300 keV were 106, 3.5x10s, and 1.2×10^6 cm 2 s^-1 · sr ^-1, respectively. (4) The average, median, and 75th percentile values of the maximum electric field strengths inside the dielectric for the aforementioned 26 events remained in the range from 106 to 107 V/m for long time periods, which sug- gests that the 'potential hazards' of internal discharges cause SSO-X anomalies. The above results can provide useful infor- mation for the design and protection of sun-synchronous spacecraft.
基金supported by the National Natural Science Foundation of China(Grant No.51377096)Fok Ying-Tong Education Foundation(Grant No.151058)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.2016YQ01)Young Elite Scientists Sponsorship Program by China Association for Science and Technology(CAST)
文摘Conductor corona performance is significant in the evaluation of electromagnetic environment for high voltage power transmission lines. The influence of artificial contaminated conductors on corona discharge was studied and turned out to be complicated. The ionized field strength on the corona cage was measured by field mill. Meanwhile, photos of corona plumes were photographed and grayed to quantitate the corona discharge intensity. Subsequently, a calculation model for equivalent electric field strength coefficient was established to evaluate the discharge intensity of conductors in coaxial cylindrical electrode. It could be found the computational results achieved an agreement with the observed experimental phenomena. By means of simulation results, a reasonable explanation was given to the finding that the closer the distance between the two protrusions was, the lower the corona discharge intensity and higher corona inception voltage of the conductors would be. In summary, the distributions of corona sources played an important role in the corona discharge and this work would provide an important reference for the evaluation of corona effects on the surface of contaminated conductors.