Electronic structures of the artificial molecule comprising two truncated pyramidal quantum dots vertically coupled and embedded in the matrix are theoretically analysed via the finite element method. When the quantum...Electronic structures of the artificial molecule comprising two truncated pyramidal quantum dots vertically coupled and embedded in the matrix are theoretically analysed via the finite element method. When the quantum dots are completely aligned, the electron energy levels decrease with the horizontally applied electric field. However, energy levels may have the maxima at non-zero electric field if the dots are staggered by a distance of several nanometers in the same direction of the electric field. In addition to shifting the energy levels, the electric field can also manipulate the electron wavefunctions confined in the quantum dots, in company with the non-perfect alignment.展开更多
In the work of numerical control reformation of general machine tool, the installation and debugging of machine tool is a crucial part. For the C6132 machine tool, and make the use of electrical and mechanical alignme...In the work of numerical control reformation of general machine tool, the installation and debugging of machine tool is a crucial part. For the C6132 machine tool, and make the use of electrical and mechanical alignment, parameter adjusting, numerical control lathe accuracy debugging and performance examination has been used to finish a series of tailing in the work of numerical control reformation of general machine tool. In this paper, the detailed process of electrical and mechanical alignment, parameter adjusting, numerical control lathe accuracy debugging and performance examination has been demonstrated, meanwhile, the specific operational approach of these work programs has been discussed. Therefore, the present results provides essential reference and approach for the numerical control reformation of general machine tool.展开更多
Directionally distributed steel fiber cement-based composites(SFCCs)were prepared by magnetic field(MF)induction technology.The orientation factor of steel fibers in the as-obtained SFCCs was determined.Besides,the el...Directionally distributed steel fiber cement-based composites(SFCCs)were prepared by magnetic field(MF)induction technology.The orientation factor of steel fibers in the as-obtained SFCCs was determined.Besides,the electrical resistivity and piezoresistive responses in two directions of aligned steel fiber cement-based composites,i e,parallel and perpendicular to MF,were measured.The effects of several variables,eg,steel fiber content,curing age,humidity,and temperature,on anisotropic electrical property were studied.The cyclic and failure piezoresistive responses in different directions were tested.It is found that the aligned steel fibers in the as-obtained SFCCs have a high orientation factor more than 0.88.Besides,SFCCs with aligned steel fibers exhibit an obvious anisotropic conductivity and piezoelectric sensitivity.The electrical conductivity of SFCCs with aligned steel fibers is less affected by temperature and humidity.At the steel fiber content of 2.5wt%,the piezoelectric sensitivity coefficient of SFCCs in the direction parallel to MF has the highest value of 324.14.In addition,the piezoresistive properties of SFCCs with aligned steel fibers in the direction parallel to MF indicate excellent sensitivity and stability under cyclic loading and monotonic loading.展开更多
In order to make montmorillonite (MMT) nanosheets disperse in low-density polyethylene (LDPE) with highly homogeneous orientation, alternating voltage is applied to molten LDPE with MMT nanosheets. The effect of elect...In order to make montmorillonite (MMT) nanosheets disperse in low-density polyethylene (LDPE) with highly homogeneous orientation, alternating voltage is applied to molten LDPE with MMT nanosheets. The effect of electric field on the dispersion of MMT in the solidified LDPE is studied. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses suggest that the MMT nano- sheets are aligned with high anisotropy to the electric field direction, which is perpendicular to the LDPE film plane. Differential scanning calorimetry (DSC) results reveal that the crystallization degree of the oriented LDPE/MMT composite increases. Moreover, through a broadband dielectric spectroscopy analyzer, it is found that MMT manifests a significantly influence in the dielectric property of the oriented composite: the dielectric constant and loss tangent of the composite both become larger. Analysis shows that the electric field-induced torque caused by the polarization of MMT flakes is the main force inducing the orientation of the MMT flakes.展开更多
Owing to the recent push toward efficient energy storage/conversion devices, fuel cells have become a strong candidate for energy conversion equipments. On the other hand, block copolymer polyelectrolytes are interest...Owing to the recent push toward efficient energy storage/conversion devices, fuel cells have become a strong candidate for energy conversion equipments. On the other hand, block copolymer polyelectrolytes are interesting materials for proton exchange membranes in fuel cells. Thus a considerable attention has been paid to the development of block copolymer polyelectrolyte membranes. In this study, the microdomains in block copolymer polyelectrolytes were controlled by external electric fields to develop high performance membranes with improved proton conductivity. The microdomain alignments in sulfonated polystyrene-b-hydrogenated poly butadiene-b-polystyrene block copolymer electrolyte were monitored by cross-sectional transmission electron microscopy analysis. The proton conductivities of the block copolymer electrolyte membranes were measured before and after exposure to electric field. In addition, the morphological features of the block copolymer electrolyte were observed with small angle x-ray scattering and atomic force microscopy.展开更多
Floating catalysis chemical vapor deposition(FCCVD)direct spinning process is an attractive method for fabrication of carbon nanotube fibers(CNTFs).However,the intrinsic structural defects,such as entanglement of the ...Floating catalysis chemical vapor deposition(FCCVD)direct spinning process is an attractive method for fabrication of carbon nanotube fibers(CNTFs).However,the intrinsic structural defects,such as entanglement of the constituent carbon nanotubes(CNTs)and inter-tube gaps within the FCCVD CNTFs,hinder the enhancement of mechanical/electrical properties and the realization of practical applications of CNTFs.Therefore,achieving a comprehensive reassembly of CNTFs with both high alignment and dense packing is particularly crucial.Herein,an efficient reinforcing strategy for FCCVD CNTFs was developed,involving chlorosulfonic acid-assisted wet stretching for CNT realigning and mechanical rolling for densification.To reveal the intrinsic relationship between the microstructure and the mechanical/electrical properties of CNTFs,the microstructure evolution of the CNTFs was characterized by cross-sectional scanning electron microscopy(SEM),wide angle X-ray scattering(WAXS),polarized Raman spectroscopy and Brunauer–Emmett–Teller(BET)analysis.The results demonstrate that this strategy can improve the CNT alignment and eliminate the inter-tube voids in the CNTFs,which will lead to the decrease of mean distance between CNTs and increase of inter-tube contact area,resulting in the enhanced inter-tube van der Waals interactions.These microstructural evolutions are beneficial to the load transfer and electron transport between CNTs,and are the main cause of the significant enhancement of mechanical and electrical properties of the CNTFs.Specifically,the tensile strength,elastic modulus and electrical conductivity of the high-performance CNTFs are 7.67 GPa,230 GPa and 4.36×10^(6)S/m,respectively.It paves the way for further applications of CNTFs in high-end functional composites.展开更多
Piezophotonics is a great interesting field of physics that has led to a number of important technologies,such as light source,smart sensors,and mechatronics.In this work,we reported Pr-doped(Bi_(0.5)Na_(0.5))TiO_(3)-...Piezophotonics is a great interesting field of physics that has led to a number of important technologies,such as light source,smart sensors,and mechatronics.In this work,we reported Pr-doped(Bi_(0.5)Na_(0.5))TiO_(3)-based lead-free ceramics with strong red photoluminescence emission and large strain response(d_(33)^(*)=460 pm/V,S=0.32%).The PL emission can be quenched by decreasing the intensity by 93%after electrical polarization(E=50 kV/cm).The local structure and electric field-induced structural changes were systematically investigated to reveal the significant distinction in photoluminescence properties caused by electrical polarization.The results indicated that polarization treatment eliminates the structural inhomogeneities and establishes a long-range ferroelectric tetragonal and rhombohedral distortion.The crystal structure transformed irreversibly from a non-ergodic to a normal ferroelectric state.PL quenching originated from the decreased distortion of octahedral due to the transition from a non-ergodic state to a highly ordered symmetrical structure.Meanwhile,the enlarged domain structure contributed to the photoluminescence quenching effect.Our findings demonstrate that an electric field can be a robust tool for adjusting the photoluminescence property and provide insights into the rela-tionship between the structure and PL properties of BNT-based ceramics under an external stimulus.展开更多
Multispeed transmissions can enhance the dynamics and economic performance of electric vehicles(EVs),but the coordinated control of the drive motor and gear shift mechanism during gear shifting is still a difficult ch...Multispeed transmissions can enhance the dynamics and economic performance of electric vehicles(EVs),but the coordinated control of the drive motor and gear shift mechanism during gear shifting is still a difficult challenge because gear shifting may cause discomfort to the occupants.To improve the swiftness of gear shifting,this paper proposes a coordinated shift control method based on the dynamic tooth alignment(DTA)algorithm for nonsynchronizer automated mechanical transmissions(NSAMTs)of EVs.After the speed difference between the sleeve(SL)and target dog gear is reduced to a certain value by speed synchronization,angle synchronization is adopted to synchronize the SL quickly to the target tooth slofs angular position predicted by the DTA.A two-speed planetary NS AMT is taken as an example to carry out comparative simulations and bench experiments.Results show that gear shifting duration and maximum jerk are reduced under the shift control with the proposed method,which proves the effectiveness of the proposed coordinated shift control method with DTA.展开更多
The multiple field-induced phase transition in 4 at.% La modified Pb(Zr,Sn,Ti)O 3 family with temperature from -40℃ to 45℃ in reported. Two electric field-induced transitions from a metastable antiferroelectric phas...The multiple field-induced phase transition in 4 at.% La modified Pb(Zr,Sn,Ti)O 3 family with temperature from -40℃ to 45℃ in reported. Two electric field-induced transitions from a metastable antiferroelectric phase to two ferroelectric phases are observed is polarization at the applied field of 4 MV/m. The critical field of phase transition between two ferroelectric phases is not larger than 2.5 MV/m, about ten to twenty percent of that ever found in PZT based ceramics. Lattice structure is shown to be orthorhombic by X-ray diffraction. Dielectric investigation reveals a relaxor-like ferroelectric behavior. Temperature-electric field phase diagram is also presented. An appreciate kind of materials is provided to investigate multiple field-induced phase transition with PZT-based ceramics.展开更多
汽车在以不同车速行驶时,回正力矩变化显著会导致方向盘回正不足或回正超调。为了克服车速变化对汽车回正性能的影响,文中提出了基于回正力矩补偿的控制方法。在分析电动助力转向系统(Electric Power Steering System,EPS)数学模型和回...汽车在以不同车速行驶时,回正力矩变化显著会导致方向盘回正不足或回正超调。为了克服车速变化对汽车回正性能的影响,文中提出了基于回正力矩补偿的控制方法。在分析电动助力转向系统(Electric Power Steering System,EPS)数学模型和回正力矩模型基础上,基于车载电子稳定性程序传感器信号,提出通过方向盘转角确定期望回正力矩,由侧向加速度确定汽车的回正力矩。根据期望回正力矩和估计的实际回正力矩对EPS进行回正补偿,并对提出的控制算法在不同车速下进行仿真验证,结果表明:对于不同初始转角均具有良好的回正性能。展开更多
基金supported by the National High Technology Research and Development Program of China (Grant No. 2009AA03Z405)the National Natural Science Foundation of China (Grant Nos. 60908028 and 60971068)the Fundamental Research Funds for the Central Universities (Grant No. BUPT2009RC0411)
文摘Electronic structures of the artificial molecule comprising two truncated pyramidal quantum dots vertically coupled and embedded in the matrix are theoretically analysed via the finite element method. When the quantum dots are completely aligned, the electron energy levels decrease with the horizontally applied electric field. However, energy levels may have the maxima at non-zero electric field if the dots are staggered by a distance of several nanometers in the same direction of the electric field. In addition to shifting the energy levels, the electric field can also manipulate the electron wavefunctions confined in the quantum dots, in company with the non-perfect alignment.
文摘In the work of numerical control reformation of general machine tool, the installation and debugging of machine tool is a crucial part. For the C6132 machine tool, and make the use of electrical and mechanical alignment, parameter adjusting, numerical control lathe accuracy debugging and performance examination has been used to finish a series of tailing in the work of numerical control reformation of general machine tool. In this paper, the detailed process of electrical and mechanical alignment, parameter adjusting, numerical control lathe accuracy debugging and performance examination has been demonstrated, meanwhile, the specific operational approach of these work programs has been discussed. Therefore, the present results provides essential reference and approach for the numerical control reformation of general machine tool.
基金Funded by the National Natural Science Foundation of China(Nos.51478164 and 52079048)the Key Research&Development Plan of Jiangsu Province,China(No.BE2021704)。
文摘Directionally distributed steel fiber cement-based composites(SFCCs)were prepared by magnetic field(MF)induction technology.The orientation factor of steel fibers in the as-obtained SFCCs was determined.Besides,the electrical resistivity and piezoresistive responses in two directions of aligned steel fiber cement-based composites,i e,parallel and perpendicular to MF,were measured.The effects of several variables,eg,steel fiber content,curing age,humidity,and temperature,on anisotropic electrical property were studied.The cyclic and failure piezoresistive responses in different directions were tested.It is found that the aligned steel fibers in the as-obtained SFCCs have a high orientation factor more than 0.88.Besides,SFCCs with aligned steel fibers exhibit an obvious anisotropic conductivity and piezoelectric sensitivity.The electrical conductivity of SFCCs with aligned steel fibers is less affected by temperature and humidity.At the steel fiber content of 2.5wt%,the piezoelectric sensitivity coefficient of SFCCs in the direction parallel to MF has the highest value of 324.14.In addition,the piezoresistive properties of SFCCs with aligned steel fibers in the direction parallel to MF indicate excellent sensitivity and stability under cyclic loading and monotonic loading.
基金Project supported by National Natural Science Foundation of China (50807054).
文摘In order to make montmorillonite (MMT) nanosheets disperse in low-density polyethylene (LDPE) with highly homogeneous orientation, alternating voltage is applied to molten LDPE with MMT nanosheets. The effect of electric field on the dispersion of MMT in the solidified LDPE is studied. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses suggest that the MMT nano- sheets are aligned with high anisotropy to the electric field direction, which is perpendicular to the LDPE film plane. Differential scanning calorimetry (DSC) results reveal that the crystallization degree of the oriented LDPE/MMT composite increases. Moreover, through a broadband dielectric spectroscopy analyzer, it is found that MMT manifests a significantly influence in the dielectric property of the oriented composite: the dielectric constant and loss tangent of the composite both become larger. Analysis shows that the electric field-induced torque caused by the polarization of MMT flakes is the main force inducing the orientation of the MMT flakes.
文摘Owing to the recent push toward efficient energy storage/conversion devices, fuel cells have become a strong candidate for energy conversion equipments. On the other hand, block copolymer polyelectrolytes are interesting materials for proton exchange membranes in fuel cells. Thus a considerable attention has been paid to the development of block copolymer polyelectrolyte membranes. In this study, the microdomains in block copolymer polyelectrolytes were controlled by external electric fields to develop high performance membranes with improved proton conductivity. The microdomain alignments in sulfonated polystyrene-b-hydrogenated poly butadiene-b-polystyrene block copolymer electrolyte were monitored by cross-sectional transmission electron microscopy analysis. The proton conductivities of the block copolymer electrolyte membranes were measured before and after exposure to electric field. In addition, the morphological features of the block copolymer electrolyte were observed with small angle x-ray scattering and atomic force microscopy.
基金support of the National Key Research and Development Program of China(No.2022YFA1203303)the National Natural Science Foundation of China(Nos.52162007,52163032 and 52202032)+3 种基金the China Postdoctoral Science Foundation(No.2022M712321)the Beijing Natural Science Foundation(No.2222094)the Jiangsu Province Postdoctoral Research Funding Program(No.2021K473C)the Jiangxi Provincial Natural Science Foundation(Nos.20224ACB204011 and 20202BAB204006).
文摘Floating catalysis chemical vapor deposition(FCCVD)direct spinning process is an attractive method for fabrication of carbon nanotube fibers(CNTFs).However,the intrinsic structural defects,such as entanglement of the constituent carbon nanotubes(CNTs)and inter-tube gaps within the FCCVD CNTFs,hinder the enhancement of mechanical/electrical properties and the realization of practical applications of CNTFs.Therefore,achieving a comprehensive reassembly of CNTFs with both high alignment and dense packing is particularly crucial.Herein,an efficient reinforcing strategy for FCCVD CNTFs was developed,involving chlorosulfonic acid-assisted wet stretching for CNT realigning and mechanical rolling for densification.To reveal the intrinsic relationship between the microstructure and the mechanical/electrical properties of CNTFs,the microstructure evolution of the CNTFs was characterized by cross-sectional scanning electron microscopy(SEM),wide angle X-ray scattering(WAXS),polarized Raman spectroscopy and Brunauer–Emmett–Teller(BET)analysis.The results demonstrate that this strategy can improve the CNT alignment and eliminate the inter-tube voids in the CNTFs,which will lead to the decrease of mean distance between CNTs and increase of inter-tube contact area,resulting in the enhanced inter-tube van der Waals interactions.These microstructural evolutions are beneficial to the load transfer and electron transport between CNTs,and are the main cause of the significant enhancement of mechanical and electrical properties of the CNTFs.Specifically,the tensile strength,elastic modulus and electrical conductivity of the high-performance CNTFs are 7.67 GPa,230 GPa and 4.36×10^(6)S/m,respectively.It paves the way for further applications of CNTFs in high-end functional composites.
基金This work was supported by the Natural Science Foundation of Shandong Province of China(No.ZR2020ME031,ZR2020ME033,ZR2020QE043,ZR2020QE044)the Innovation Team of Higher Educational Science and Technology Program in Shandong Province(No.2019KJA025)Key Laboratory of Inorganic Functional Ma-terials and Devices,Chinese Academy of Sciences(Grant No.KLIFMD202008).
文摘Piezophotonics is a great interesting field of physics that has led to a number of important technologies,such as light source,smart sensors,and mechatronics.In this work,we reported Pr-doped(Bi_(0.5)Na_(0.5))TiO_(3)-based lead-free ceramics with strong red photoluminescence emission and large strain response(d_(33)^(*)=460 pm/V,S=0.32%).The PL emission can be quenched by decreasing the intensity by 93%after electrical polarization(E=50 kV/cm).The local structure and electric field-induced structural changes were systematically investigated to reveal the significant distinction in photoluminescence properties caused by electrical polarization.The results indicated that polarization treatment eliminates the structural inhomogeneities and establishes a long-range ferroelectric tetragonal and rhombohedral distortion.The crystal structure transformed irreversibly from a non-ergodic to a normal ferroelectric state.PL quenching originated from the decreased distortion of octahedral due to the transition from a non-ergodic state to a highly ordered symmetrical structure.Meanwhile,the enlarged domain structure contributed to the photoluminescence quenching effect.Our findings demonstrate that an electric field can be a robust tool for adjusting the photoluminescence property and provide insights into the rela-tionship between the structure and PL properties of BNT-based ceramics under an external stimulus.
基金This work was supported by the Science and Technology Planning Project of Guangdong Province,China(Grant Nos.2015B010119002 and 2016B010132001).
文摘Multispeed transmissions can enhance the dynamics and economic performance of electric vehicles(EVs),but the coordinated control of the drive motor and gear shift mechanism during gear shifting is still a difficult challenge because gear shifting may cause discomfort to the occupants.To improve the swiftness of gear shifting,this paper proposes a coordinated shift control method based on the dynamic tooth alignment(DTA)algorithm for nonsynchronizer automated mechanical transmissions(NSAMTs)of EVs.After the speed difference between the sleeve(SL)and target dog gear is reduced to a certain value by speed synchronization,angle synchronization is adopted to synchronize the SL quickly to the target tooth slofs angular position predicted by the DTA.A two-speed planetary NS AMT is taken as an example to carry out comparative simulations and bench experiments.Results show that gear shifting duration and maximum jerk are reduced under the shift control with the proposed method,which proves the effectiveness of the proposed coordinated shift control method with DTA.
文摘The multiple field-induced phase transition in 4 at.% La modified Pb(Zr,Sn,Ti)O 3 family with temperature from -40℃ to 45℃ in reported. Two electric field-induced transitions from a metastable antiferroelectric phase to two ferroelectric phases are observed is polarization at the applied field of 4 MV/m. The critical field of phase transition between two ferroelectric phases is not larger than 2.5 MV/m, about ten to twenty percent of that ever found in PZT based ceramics. Lattice structure is shown to be orthorhombic by X-ray diffraction. Dielectric investigation reveals a relaxor-like ferroelectric behavior. Temperature-electric field phase diagram is also presented. An appreciate kind of materials is provided to investigate multiple field-induced phase transition with PZT-based ceramics.
文摘汽车在以不同车速行驶时,回正力矩变化显著会导致方向盘回正不足或回正超调。为了克服车速变化对汽车回正性能的影响,文中提出了基于回正力矩补偿的控制方法。在分析电动助力转向系统(Electric Power Steering System,EPS)数学模型和回正力矩模型基础上,基于车载电子稳定性程序传感器信号,提出通过方向盘转角确定期望回正力矩,由侧向加速度确定汽车的回正力矩。根据期望回正力矩和估计的实际回正力矩对EPS进行回正补偿,并对提出的控制算法在不同车速下进行仿真验证,结果表明:对于不同初始转角均具有良好的回正性能。