This paper presents a high performance electric field micro sensor with combined differential structure.The sensor consists of two backward laid micro-machined chips,each packaged by polymer and metal.The novel combin...This paper presents a high performance electric field micro sensor with combined differential structure.The sensor consists of two backward laid micro-machined chips,each packaged by polymer and metal.The novel combined differential structure effectively reduces various environmental affections,such as thermal drift,humidity drift and electrostatic charge accumulation.The sensor is tested in near-ground place as well as balloon-borne sounding.In different weather conditions,the measurement results showed good agreement with those of the commercial electric field mill.展开更多
In this paper,we propose a BPR-CNN(Biometric Pattern Recognition-Convolution Neural Network)classifier for hand motion classification as well as a dynamic threshold algorithm for motion signal detection and extraction...In this paper,we propose a BPR-CNN(Biometric Pattern Recognition-Convolution Neural Network)classifier for hand motion classification as well as a dynamic threshold algorithm for motion signal detection and extraction by EF(Electric Field)sensors.Currently,an EF sensor or EPS(Electric Potential Sensor)system is attracting attention as a next-generationmotion sensing technology due to low computation and price,high sensitivity and recognition speed compared to other sensor systems.However,it remains as a challenging problem to accurately detect and locate the authentic motion signal frame automatically in real-time when sensing body-motions such as hand motion,due to the variance of the electric-charge state by heterogeneous surroundings and operational conditions.This hinders the further utilization of the EF sensing;thus,it is critical to design the robust and credible methodology for detecting and extracting signals derived from the motion movement in order to make use and apply the EF sensor technology to electric consumer products such as mobile devices.In this study,we propose a motion detection algorithm using a dynamic offset-threshold method to overcome uncertainty in the initial electrostatic charge state of the sensor affected by a user and the surrounding environment of the subject.This method is designed to detect hand motions and extract its genuine motion signal frame successfully with high accuracy.After setting motion frames,we normalize the signals and then apply them to our proposed BPR-CNN motion classifier to recognize their motion types.Conducted experiment and analysis show that our proposed dynamic threshold method combined with a BPR-CNN classifier can detect the hand motions and extract the actual frames effectively with 97.1%accuracy,99.25%detection rate,98.4%motion frame matching rate and 97.7%detection&extraction success rate.展开更多
The design and optimization of two types of novel miniature vibrating Electric Field Sensors (EFSs) based on Micro Electro Mechanical Systems (MEMS) technology are presented.They have different structures and vibratin...The design and optimization of two types of novel miniature vibrating Electric Field Sensors (EFSs) based on Micro Electro Mechanical Systems (MEMS) technology are presented.They have different structures and vibrating modes. The volume is much smaller than other types of charge-induced EFSs such as field-mills. As miniaturizing, the induced signal is reduced enormously and a high sensitive circuit is needed to detect it. Elaborately designed electrodes can increase the amplitude of the output current, making the detecting circuit simplified and improving the signal-to-noise ratio. Computer simulations for different structural parameters of the EFSs and vibrating methods have been carried out by Finite Element Method (FEM). It is proved that the new structures are realizable and the output signals are detectable.展开更多
This letter proposes a novel design of a Micro Electro Mechanical System (MEMS) device featuring a metal grating vibratory mierostructure driven by electrostatic force to sense the spatial electric field. Due to the...This letter proposes a novel design of a Micro Electro Mechanical System (MEMS) device featuring a metal grating vibratory mierostructure driven by electrostatic force to sense the spatial electric field. Due to the advantages in slide-film damping and large vibration amplitude, such a device makes atmospheric packaging a low-cost option for practical manufacture. In this letter, we present the operating principles and specifications, the design structure, as well as the finite element simulation. Computational analysis shows that our design obtains good results in device parameters setting, while its simplicity and low-cost features make it an attractive solution for applications.展开更多
Electric field measurement holds immense significance in various domains.The power supply and signal acquisition units of the sensor may be coupled with ground wire interference,which could result in reduced measureme...Electric field measurement holds immense significance in various domains.The power supply and signal acquisition units of the sensor may be coupled with ground wire interference,which could result in reduced measurement accuracy.Moreover,this problem is often ignored by researchers.This paper investigated the origin of ground coupling interference in electric field sensors and its impact on measurement accuracy.A miniature undistorted electric field sensor with wireless transmission was compared with existing D-dot,microelectromechanical systems(MEMS),and optical sensors.The results indicate that MEMS and D-dot exhibit diminished accuracy in measuring electric fields under uniform conditions,owing to interference from ground wires.In the case of transmission lines with non-uniform conditions,the wireless sensor exhibited a measurement error of 5%,whereas the optical sensor showed an error rate of approximately 8%.However,the D-dot sensor displayed a measurement error exceeding 50%,whereas the MEMS sensor yielded an error as high as 150%.This means that the wireless sensor isolates the ground-coupled interference signal and realizes the distortion-free measurement of the electric field.The wireless sensors will find extensive applications in new power systems for intelligent equipment status perception,fault warning,and other scenarios.展开更多
Large-bandwidth,high-sensitivity,and large dynamic range electric field sensors are gradually replacing their traditional counterparts.The lithium-niobate-on-insulator(LNOI)material has emerged as an ideal platform fo...Large-bandwidth,high-sensitivity,and large dynamic range electric field sensors are gradually replacing their traditional counterparts.The lithium-niobate-on-insulator(LNOI)material has emerged as an ideal platform for developing such devices,owing to its low optical loss,high electro-optical modulation efficiency,and significant bandwidth potential.In this paper,we propose and demonstrate an electric field sensor based on LNOI.The sensor consists of an asymmetric Mach–Zehnder interferometer(MZI)and a tapered dipole antenna array.The measured fiber-to-fiber loss is less than−6.7 dB,while the MZI structure exhibits an extinction ratio of greater than 20 dB.Moreover,64-QAM signals at 2 GHz were measured,showing an error vector magnitude(EVM)of less than 8%.展开更多
In planning and executing marine controlled-source electromagnetic methods, seafloor electromagnetic receivers must overcome the problems of noise, clock drift, and power consumption. To design a receiver that perform...In planning and executing marine controlled-source electromagnetic methods, seafloor electromagnetic receivers must overcome the problems of noise, clock drift, and power consumption. To design a receiver that performs well and overcomes the abovementioned problems, we performed forward modeling of the E-field abnormal response and established the receiver's characteristics. We describe the design optimization and the properties of each component, that is, low-noise induction coil sensor, low-noise Ag/AgCI electrode, low-noise chopper amplifier, digital temperature-compensated crystal oscillator module, acoustic telemetry modem, and burn wire system. Finally, we discuss the results of onshore and offshore field tests to show the effectiveness of the developed seafloor electromagnetic receiver and its performance: typical E-field noise of 0.12 nV/m/rt(Hz) at 0.5 Hz, dynamic range higher than 120 dB, clock drift lower than 1 ms/day, and continuous operation of at least 21 days.展开更多
A Lithium niobate (LiNbO3) based integrated optical E-field sensor with an optical waveguide Mach-Zehnder interferometer (MZI) and a tapered antenna has been designed and fabricated for the measurement of the puls...A Lithium niobate (LiNbO3) based integrated optical E-field sensor with an optical waveguide Mach-Zehnder interferometer (MZI) and a tapered antenna has been designed and fabricated for the measurement of the pulsed electric field. The minimum detectable E-field of the sensor was 10kV/m. The sensor showed a good linear characteristic while the input E-fields varied from 10kV/m to 370kV/m. Furthermore, the maximum detectable E-field of the sensor, which could be calculated from the sensor input/output characteristic, was approximately equal to 1000kV/m. All these results suggest that such sensor can be used for the measurement of the lighting impulse electric field.展开更多
The E-field of pulse line ion accelerator (PLIA) is unique with high frequency (~MHz), large magni- tude (~MV/m), and limited measuring space (~cm). The integrated optical E-field sensor (IOES) has remarkabl...The E-field of pulse line ion accelerator (PLIA) is unique with high frequency (~MHz), large magni- tude (~MV/m), and limited measuring space (~cm). The integrated optical E-field sensor (IOES) has remarkable advantages and has been used for PLIA E-field measurement. Firstly, the transfer function of the IOES has been calibrated to ensure measurement accuracy. The time-domain response illustrates that the sensor has a fast dynamic performance to effectively follow a 4 ns rising edge. Then, the E-field distribution along the axis and near the insula- tor surface of the PLIA was measured, showing that propagation of the E-field is almost lossless and the E-field near the insulation surface is about 1.1 times larger than that along the axis, which is in accordance with the simulation result.展开更多
基金Supported by the National High Technology Research and Development Program of China(863 Program,2011AA-040405)the National Natural Science Foundation of China(Nos.61101049,61201078,61302032,61327810)
文摘This paper presents a high performance electric field micro sensor with combined differential structure.The sensor consists of two backward laid micro-machined chips,each packaged by polymer and metal.The novel combined differential structure effectively reduces various environmental affections,such as thermal drift,humidity drift and electrostatic charge accumulation.The sensor is tested in near-ground place as well as balloon-borne sounding.In different weather conditions,the measurement results showed good agreement with those of the commercial electric field mill.
基金This work was supported by the NRF of Korea grant funded by the Korea government(MIST)(No.2019 R1F1A1062829).
文摘In this paper,we propose a BPR-CNN(Biometric Pattern Recognition-Convolution Neural Network)classifier for hand motion classification as well as a dynamic threshold algorithm for motion signal detection and extraction by EF(Electric Field)sensors.Currently,an EF sensor or EPS(Electric Potential Sensor)system is attracting attention as a next-generationmotion sensing technology due to low computation and price,high sensitivity and recognition speed compared to other sensor systems.However,it remains as a challenging problem to accurately detect and locate the authentic motion signal frame automatically in real-time when sensing body-motions such as hand motion,due to the variance of the electric-charge state by heterogeneous surroundings and operational conditions.This hinders the further utilization of the EF sensing;thus,it is critical to design the robust and credible methodology for detecting and extracting signals derived from the motion movement in order to make use and apply the EF sensor technology to electric consumer products such as mobile devices.In this study,we propose a motion detection algorithm using a dynamic offset-threshold method to overcome uncertainty in the initial electrostatic charge state of the sensor affected by a user and the surrounding environment of the subject.This method is designed to detect hand motions and extract its genuine motion signal frame successfully with high accuracy.After setting motion frames,we normalize the signals and then apply them to our proposed BPR-CNN motion classifier to recognize their motion types.Conducted experiment and analysis show that our proposed dynamic threshold method combined with a BPR-CNN classifier can detect the hand motions and extract the actual frames effectively with 97.1%accuracy,99.25%detection rate,98.4%motion frame matching rate and 97.7%detection&extraction success rate.
基金Supported by the National Natural Science Foundation of China (No.60172001).
文摘The design and optimization of two types of novel miniature vibrating Electric Field Sensors (EFSs) based on Micro Electro Mechanical Systems (MEMS) technology are presented.They have different structures and vibrating modes. The volume is much smaller than other types of charge-induced EFSs such as field-mills. As miniaturizing, the induced signal is reduced enormously and a high sensitive circuit is needed to detect it. Elaborately designed electrodes can increase the amplitude of the output current, making the detecting circuit simplified and improving the signal-to-noise ratio. Computer simulations for different structural parameters of the EFSs and vibrating methods have been carried out by Finite Element Method (FEM). It is proved that the new structures are realizable and the output signals are detectable.
基金Supported by the National Natural Science Foundation of China (No.60172001).
文摘This letter proposes a novel design of a Micro Electro Mechanical System (MEMS) device featuring a metal grating vibratory mierostructure driven by electrostatic force to sense the spatial electric field. Due to the advantages in slide-film damping and large vibration amplitude, such a device makes atmospheric packaging a low-cost option for practical manufacture. In this letter, we present the operating principles and specifications, the design structure, as well as the finite element simulation. Computational analysis shows that our design obtains good results in device parameters setting, while its simplicity and low-cost features make it an attractive solution for applications.
基金supported in part by the National Key Research and Development Program of China under Grant 2022YFB3206800in part by the National Natural Science Foundation of China under Grant 52125703.
文摘Electric field measurement holds immense significance in various domains.The power supply and signal acquisition units of the sensor may be coupled with ground wire interference,which could result in reduced measurement accuracy.Moreover,this problem is often ignored by researchers.This paper investigated the origin of ground coupling interference in electric field sensors and its impact on measurement accuracy.A miniature undistorted electric field sensor with wireless transmission was compared with existing D-dot,microelectromechanical systems(MEMS),and optical sensors.The results indicate that MEMS and D-dot exhibit diminished accuracy in measuring electric fields under uniform conditions,owing to interference from ground wires.In the case of transmission lines with non-uniform conditions,the wireless sensor exhibited a measurement error of 5%,whereas the optical sensor showed an error rate of approximately 8%.However,the D-dot sensor displayed a measurement error exceeding 50%,whereas the MEMS sensor yielded an error as high as 150%.This means that the wireless sensor isolates the ground-coupled interference signal and realizes the distortion-free measurement of the electric field.The wireless sensors will find extensive applications in new power systems for intelligent equipment status perception,fault warning,and other scenarios.
基金supported by the National Key Research and Development Program of China(No.2021YFB2800104)the National Natural Science Foundation of China(Nos.62175079 and 62205119).
文摘Large-bandwidth,high-sensitivity,and large dynamic range electric field sensors are gradually replacing their traditional counterparts.The lithium-niobate-on-insulator(LNOI)material has emerged as an ideal platform for developing such devices,owing to its low optical loss,high electro-optical modulation efficiency,and significant bandwidth potential.In this paper,we propose and demonstrate an electric field sensor based on LNOI.The sensor consists of an asymmetric Mach–Zehnder interferometer(MZI)and a tapered dipole antenna array.The measured fiber-to-fiber loss is less than−6.7 dB,while the MZI structure exhibits an extinction ratio of greater than 20 dB.Moreover,64-QAM signals at 2 GHz were measured,showing an error vector magnitude(EVM)of less than 8%.
基金sponsored by the 863 Program(No.2009AA09A2012012AA09A201)+1 种基金China Geological Survey Project(No.201100307)the Fundamental Research Funds of the Ministry of Education for the Central Universities(No.2652011249)
文摘In planning and executing marine controlled-source electromagnetic methods, seafloor electromagnetic receivers must overcome the problems of noise, clock drift, and power consumption. To design a receiver that performs well and overcomes the abovementioned problems, we performed forward modeling of the E-field abnormal response and established the receiver's characteristics. We describe the design optimization and the properties of each component, that is, low-noise induction coil sensor, low-noise Ag/AgCI electrode, low-noise chopper amplifier, digital temperature-compensated crystal oscillator module, acoustic telemetry modem, and burn wire system. Finally, we discuss the results of onshore and offshore field tests to show the effectiveness of the developed seafloor electromagnetic receiver and its performance: typical E-field noise of 0.12 nV/m/rt(Hz) at 0.5 Hz, dynamic range higher than 120 dB, clock drift lower than 1 ms/day, and continuous operation of at least 21 days.
文摘A Lithium niobate (LiNbO3) based integrated optical E-field sensor with an optical waveguide Mach-Zehnder interferometer (MZI) and a tapered antenna has been designed and fabricated for the measurement of the pulsed electric field. The minimum detectable E-field of the sensor was 10kV/m. The sensor showed a good linear characteristic while the input E-fields varied from 10kV/m to 370kV/m. Furthermore, the maximum detectable E-field of the sensor, which could be calculated from the sensor input/output characteristic, was approximately equal to 1000kV/m. All these results suggest that such sensor can be used for the measurement of the lighting impulse electric field.
基金Supported by Fund of National Priority Basic Research of China (2011CB209403)National Natural Science Foundation of China(51107063)
文摘The E-field of pulse line ion accelerator (PLIA) is unique with high frequency (~MHz), large magni- tude (~MV/m), and limited measuring space (~cm). The integrated optical E-field sensor (IOES) has remarkable advantages and has been used for PLIA E-field measurement. Firstly, the transfer function of the IOES has been calibrated to ensure measurement accuracy. The time-domain response illustrates that the sensor has a fast dynamic performance to effectively follow a 4 ns rising edge. Then, the E-field distribution along the axis and near the insula- tor surface of the PLIA was measured, showing that propagation of the E-field is almost lossless and the E-field near the insulation surface is about 1.1 times larger than that along the axis, which is in accordance with the simulation result.