Plug-in Hybrid Electric Vehicles(PHEVs)represent an innovative breed of transportation,harnessing diverse power sources for enhanced performance.Energy management strategies(EMSs)that coordinate and control different ...Plug-in Hybrid Electric Vehicles(PHEVs)represent an innovative breed of transportation,harnessing diverse power sources for enhanced performance.Energy management strategies(EMSs)that coordinate and control different energy sources is a critical component of PHEV control technology,directly impacting overall vehicle performance.This study proposes an improved deep reinforcement learning(DRL)-based EMSthat optimizes realtime energy allocation and coordinates the operation of multiple power sources.Conventional DRL algorithms struggle to effectively explore all possible state-action combinations within high-dimensional state and action spaces.They often fail to strike an optimal balance between exploration and exploitation,and their assumption of a static environment limits their ability to adapt to changing conditions.Moreover,these algorithms suffer from low sample efficiency.Collectively,these factors contribute to convergence difficulties,low learning efficiency,and instability.To address these challenges,the Deep Deterministic Policy Gradient(DDPG)algorithm is enhanced using entropy regularization and a summation tree-based Prioritized Experience Replay(PER)method,aiming to improve exploration performance and learning efficiency from experience samples.Additionally,the correspondingMarkovDecision Process(MDP)is established.Finally,an EMSbased on the improvedDRLmodel is presented.Comparative simulation experiments are conducted against rule-based,optimization-based,andDRL-based EMSs.The proposed strategy exhibitsminimal deviation fromthe optimal solution obtained by the dynamic programming(DP)strategy that requires global information.In the typical driving scenarios based onWorld Light Vehicle Test Cycle(WLTC)and New European Driving Cycle(NEDC),the proposed method achieved a fuel consumption of 2698.65 g and an Equivalent Fuel Consumption(EFC)of 2696.77 g.Compared to the DP strategy baseline,the proposed method improved the fuel efficiency variances(FEV)by 18.13%,15.1%,and 8.37%over the Deep QNetwork(DQN),Double DRL(DDRL),and original DDPG methods,respectively.The observational outcomes demonstrate that the proposed EMS based on improved DRL framework possesses good real-time performance,stability,and reliability,effectively optimizing vehicle economy and fuel consumption.展开更多
Now the optimization strategies for power distribution are researched widely, and most of them are aiming to the optimal fuel economy and the driving cycle must be preknown. Thus if the actual driving condition deviat...Now the optimization strategies for power distribution are researched widely, and most of them are aiming to the optimal fuel economy and the driving cycle must be preknown. Thus if the actual driving condition deviates from the scheduled driving cycle, the effect of optimal results will be declined greatly. Therefore, the instantaneous optimization strategy carried out on-line is studied in this paper. The power split path and the transmission efficiency are analyzed based on a special power-split scheme and the efficiency models of the power transmitting components are established. The synthetical efficiency optimization model is established for enhancing the transmission efficiency and the fuel economy. The identification of the synthetical efficiency as the optimization objective and the constrain group are discussed emphatically. The optimization is calculated by the adaptive simulated annealing (ASA) algorithm and realized on-line by the radial basis function (RBF)-based similar models. The optimization for power distribution of the hybrid vehicle in an actual driving condition is carried out and the road test results are presented. The test results indicate that the synthetical efficiency optimization method can enhance the transmission efficiency and the fuel economy of the power-split hybrid electric vehicle (HEV) observably. Compared to the rules-based strategy the optimization strategy is optimal and achieves the approximate global optimization solution for the power distribution. The synthetical efficiency optimization solved by ASA algorithm can give attentions to both optimization quality and calculation efficiency, thus it has good application foreground for the power distribution of power-split HEV.展开更多
A novel steady-state optimization (SSO) of internal combustion engine (ICE) strategy is proposed to maximize the efficiency of the overall powertrain for hybrid electric vehicles, in which the ICE efficiency, the ...A novel steady-state optimization (SSO) of internal combustion engine (ICE) strategy is proposed to maximize the efficiency of the overall powertrain for hybrid electric vehicles, in which the ICE efficiency, the efficiencies of the electric motor (EM) and the energy storage device are all explicitly taken into account. In addition, a novel idle optimization of ICE strategy is implemented to obtain the optimal idle operating point of the ICE and corresponding optimal parking generation power of the EM using the view of the novel SSO of ICE strategy. Simulations results show that potential fuel economy improvement is achieved relative to the conventional one which only optimized the ICE efficiency by the novel SSO of ICE strategy, and fuel consumption per voltage increment decreases a lot during the parking charge by the novel idle optimization of ICE strategy.展开更多
Energy management strategy (EMS) is the core of the real-time controlalgorithm of the hybrid electric vehicle (HEV). A novel EMS using the logic threshold approach withincorporation of a stand-by optimization algorith...Energy management strategy (EMS) is the core of the real-time controlalgorithm of the hybrid electric vehicle (HEV). A novel EMS using the logic threshold approach withincorporation of a stand-by optimization algorithm is proposed. The aim of it is to minimize theengine fuel consumption and maintain the battery state of charge (SOC) in its operation range, whilesatisfying the vehicle performance and drivability requirements. The hybrid powertrain bench testis carried out to collect data of the engine, motor and battery pack, which are used in the EMS tocontrol the powertrain. Computer simulation model of the HEV is established in the MATLAB/Simulinkenvironment according to the bench test results. Simulation results are presented for behaviors ofthe engine, motor and battery. The proposed EMS is implemented for a real parallel hybrid carcontrol system and validated by vehicle field tests.展开更多
The paper proposes an adoption of slope,elevation,speed and route distance preview to achieve optimal energymanagement of plug-in hybrid electric vehicles(PHEVs).Theapproach is to identify route features from historic...The paper proposes an adoption of slope,elevation,speed and route distance preview to achieve optimal energymanagement of plug-in hybrid electric vehicles(PHEVs).Theapproach is to identify route features from historical and real-time traffic data,in which information fusion model and trafficprediction model are used to improve the information accuracy.Then,dynamic programming combined with equivalent con-sumption minimization strategy is used to compute an optimalsolution for real-time energy management.The solution is thereference for PHEV energy management control along the route.To improve the system's ability of handling changing situation,the study further explores predictive control model in the real-time control of the energy.A simulation is performed to modelPHEV under above energy control strategy with route preview.The results show that the average fuel consumption of PHEValong the previewed route with model predictive control(MPC)strategy can be reduced compared with optimal strategy andbase control strategy.展开更多
Since the main power source of hybrid electric vehicle(HEV) is supplied by the power battery,the predicted performance of power battery,especially the state-of-charge(SOC) estimation has attracted great attention ...Since the main power source of hybrid electric vehicle(HEV) is supplied by the power battery,the predicted performance of power battery,especially the state-of-charge(SOC) estimation has attracted great attention in the area of HEV.However,the value of SOC estimation could not be greatly precise so that the running performance of HEV is greatly affected.A variable structure extended kalman filter(VSEKF)-based estimation method,which could be used to analyze the SOC of lithium-ion battery in the fixed driving condition,is presented.First,the general lower-order battery equivalent circuit model(GLM),which includes column accumulation model,open circuit voltage model and the SOC output model,is established,and the off-line and online model parameters are calculated with hybrid pulse power characteristics(HPPC) test data.Next,a VSEKF estimation method of SOC,which integrates the ampere-hour(Ah) integration method and the extended Kalman filter(EKF) method,is executed with different adaptive weighting coefficients,which are determined according to the different values of open-circuit voltage obtained in the corresponding charging or discharging processes.According to the experimental analysis,the faster convergence speed and more accurate simulating results could be obtained using the VSEKF method in the running performance of HEV.The error rate of SOC estimation with the VSEKF method is focused in the range of 5% to 10% comparing with the range of 20% to 30% using the EKF method and the Ah integration method.In Summary,the accuracy of the SOC estimation in the lithium-ion battery cell and the pack of lithium-ion battery system,which is obtained utilizing the VSEKF method has been significantly improved comparing with the Ah integration method and the EKF method.The VSEKF method utilizing in the SOC estimation in the lithium-ion pack of HEV can be widely used in practical driving conditions.展开更多
An electrical equivalent circuit model for lithium-ion batteries used for hybrid electric vehicles (HEV) is presented. The model has two RC networks characterizing battery activation and concentration polarization p...An electrical equivalent circuit model for lithium-ion batteries used for hybrid electric vehicles (HEV) is presented. The model has two RC networks characterizing battery activation and concentration polarization process. The parameters of the model are identified using combined experimental and extended Kalman filter (EKF) recursive methods. The open-circuit voltage and ohmic resistance of the battery are directly measured and calculated from experimental measurements, respectively. The rest of the coupled dynamic parameters, i.e. the RC network parameters, are estimated using the EKF method. Experimental and simulation results are presented to demonstrate the efficacy of the proposed circuit model and parameter identification techniques for simulating battery dynamics.展开更多
With most countries paying attention to the environment protection, hybrid electric vehicles have become a focus of automobile research and development due to the characteristics of energy saving and low emission. Pow...With most countries paying attention to the environment protection, hybrid electric vehicles have become a focus of automobile research and development due to the characteristics of energy saving and low emission. Power follower control strategy(PFCS) and DC-link voltage control strategy are two sorts of control strategies for series hybrid electric vehicles(HEVs). Combining those two control strategies is a new idea for control strategy of series hybrid electric vehicles. By tuning essential parameters which are the defined constants under DClink voltage control and under PFCS, the points of minimum mass of equivalent fuel consumption(EFC) corresponding to a series of variables are marked for worldwide harmonized light vehicles test procedure(WLTP). The fuel economy of series HEVs with the combination control schemes performs better compared with individual control scheme. The results show the effects of the combination control schemes for series HEVs driving in an urban environment.展开更多
This paper reviews various hybrid excited(HE)machines from the perspective of location of PM and DC excitation,series/parallel connection of PM and DC excited magnetic fields,and 2D/3D magnetic fields,respectively.The...This paper reviews various hybrid excited(HE)machines from the perspective of location of PM and DC excitation,series/parallel connection of PM and DC excited magnetic fields,and 2D/3D magnetic fields,respectively.The advantages as well as drawbacks of each category are analyzed.Since an additional control degree,i.e.DC excitation,is introduced in the HE machine,the flux weakening control strategies are more complex.The flux weakening performance as well as efficiency are compared with different control strategies.Then,the potential to mitigate the risk of uncontrolled overvoltage fault at high speed operation is highlighted by controlling the field excitation.Since additional DC coils are usually required for HE machines compared with pure PM excitation,the spatial confliction inevitably results in electromagnetic performance reduction.Finally,the technique to integrate the field and armature windings with open-winding drive circuit is introduced,and novel HE machines without a DC coil are summarized.展开更多
The operating mode of a single shaft hybrid electric vehicle (SSHEV) in which the electric motor exerts negative torque on the shaft to imitate engine braking is analyzed. The method of determining the quantity of r...The operating mode of a single shaft hybrid electric vehicle (SSHEV) in which the electric motor exerts negative torque on the shaft to imitate engine braking is analyzed. The method of determining the quantity of regenerative braking torque is proposed with the premise that the braking intensity required by the driver is satisfied. On this basis, factors that affect torque generated by the motor are listed, and how the battery' s temperature and state of charge ( SOC ) restrict and correct the braking torque is expounded. Finally, road test results show that the motor' s constant power or constant torque control is an effective way to recover the mechanical energy during decelerating.展开更多
In this paper, a plug-in hybrid electrical vehicle(PHEV) is taken as the research object, and its dynamic performance and economic performance are taken as the research goals. Battery charge-sustaining(CS) period is d...In this paper, a plug-in hybrid electrical vehicle(PHEV) is taken as the research object, and its dynamic performance and economic performance are taken as the research goals. Battery charge-sustaining(CS) period is divided into power mode and economy mode. Energy management strategy designing methods of power mode and economy mode are proposed. Maximum velocity, acceleration performance and fuel consumption are simulated during the CS period in the AVL CRUISE simulation environment. The simulation results indicate that the maximum velocity and acceleration time of the power mode are better than those in the economy mode. Fuel consumption of the economy mode is better than that in the power mode. Fuel consumption of PHEV during the CS period is further improved by using the methods proposed in this paper, and this is meaningful for research and development of PHEV.展开更多
Aiming to reduce fuel consumption and emissions of a dual-clutch hybrid electric vehicle during cold start, multiobjective optimization for fuel consumption and HC/CO emission from a TWC(three-way catalytic converter)...Aiming to reduce fuel consumption and emissions of a dual-clutch hybrid electric vehicle during cold start, multiobjective optimization for fuel consumption and HC/CO emission from a TWC(three-way catalytic converter) outlet is presented in this paper. DP(dynamic programming) considering dual-state variables is proposed based on the Bellman optimality principle. Both the battery SOC(state of charge) and the temperature of TWC monolith are considered in the algorithm simultaneously. In this way the global optimal control strategy and the Pareto optimal solution of multi-objective function are derived. Simulation results show that the proposed method is able to promote the TWC light-off significantly by decreasing the engine's load and improving exhaust temperature from the outlet of the engine, in comparison with original DP considering the single battery SOC. Compared to the results achieved by rule-based control strategy, fuel economy and emission of TWC outlet for cold start are optimized comprehensively. Each indicator of Pareto solution set shows the significant improvement.展开更多
Fuel cell hybrid electric vehicles are currently being considered as ideal means to solve the energy crisis and global warming in today’s society.In this context,this paper proposes a method to solve the problem rela...Fuel cell hybrid electric vehicles are currently being considered as ideal means to solve the energy crisis and global warming in today’s society.In this context,this paper proposes a method to solve the problem related to the dependence of the so-called optimal equivalent factor(determined in the framework of the equivalent consumption minimum strategy-ECMS)on the working conditions.The simulation results show that under typical conditions(some representative cities being considered),the proposed strategy can maintain the power balance;for different initial battery’s states of charge(SOC),after the SOC stabilizes,the fuel consumption is 5.25 L/100 km.展开更多
As government agencies continue to tighten emissions regulations due to the continued increase in greenhouse gas production, automotive industries are seeking to produce increasingly efficient vehicle technology. Hybr...As government agencies continue to tighten emissions regulations due to the continued increase in greenhouse gas production, automotive industries are seeking to produce increasingly efficient vehicle technology. Hybrid electric vehicles (HEVs) have been introduced to mitigate problems while improving fuel economy. HEVs have led to the demand of creating more advanced controls software to consider multiple components for propulsive power in a vehicle. A large section in the software development process is the implementation of an optimal energy management strategy meant to improve the overall fuel efficiency of the vehicle. Optimal strategies can be implemented when driving conditions are known a prior. The Equivalent Consumption Minimization Strategy (ECMS) is an optimal control strategy that uses an equivalence factor to equate electrical to mechanical power when performing torque split determination between the internal combustion engine and electric motor for propulsive and regenerative torque. This equivalence factor is determined from offline vehicle simulations using a sensitivity analysis to provide optimal fuel economy results while maintaining predetermined high voltage battery state of charge (SOC) constraints. When the control hierarchy is modified or different driving styles are applied, the analysis must be redone to update the equivalence factor. The goal of this work is to implement a fuzzy logic controller that dynamically updates the equivalence factor to improve fuel economy, maintain a strict charge sustaining window of operation for the high voltage battery, and reduce computational time required during algorithm development. The adaptive algorithm is validated against global optimum fuel economy and charge sustaining results from a sensitivity analysis performed for multiple drive cycles. Results show a maximum fuel economy improvement of 9.82% when using a mild driving style and a 95% success rate when maintaining an ending SOC within 5% of the desired SOC regardless of starting SOC.展开更多
The transportation sector is responsible for 25% of the total Carbon dioxide (CO2) emissions, whereas 60.6% of this sector represents small and medium passenger cars. However, as noted by the European Union Long-term ...The transportation sector is responsible for 25% of the total Carbon dioxide (CO2) emissions, whereas 60.6% of this sector represents small and medium passenger cars. However, as noted by the European Union Long-term strategy, there are two ways to reduce the amount of CO2 emissions in the transportation sector. The first way is characterized by creating more efficient vehicles. In contrast, the second way is characterized by changing the fuel used. The current study addressed the second way, changing the fuel type. The study examined the potential of battery electric vehicles (BEVs) as an alternative fuel type to reduce CO2 emissions in Hungarys transportation sector. The study used secondary data retrieved from Statista and stata.com to analyze the future trends of BEVs in Hungary. The results showed that the percentage of BEVs in Hungary in 2022 was 0.4% compared to the total number of registered passenger cars, which is 3.8 million. The simple exponential smoothing (SES) time series forecast revealed that the number of BEVs is expected to reach 84,192 in 2030, indicating a percentage increase of 2.21% in the next eight years. The study suggests that increasing the number of BEVs is necessary to address the negative impact of CO2 emissions on society. The Hungarian Ministry of Innovation and Technologys strategy to reduce the cost of BEVs may increase the percentage of BEVs by 10%, resulting in a potential average reduction of 76,957,600 g/km of CO2 compared to gasoline, diesel, hybrid electric vehicles (HEVs), and plug-in hybrid vehicles (PHEVs).展开更多
In this paper, the hybrid electric vehicle braking process is researched, by using variables consists of HEV speed, motor speed, and state of charge established, fimctions of mechanical braking force, regenerative bra...In this paper, the hybrid electric vehicle braking process is researched, by using variables consists of HEV speed, motor speed, and state of charge established, fimctions of mechanical braking force, regenerative braking force and efficiency of energy recovery are constructed, and the control goal is to maximization the energy recovery efficiency. Under the feedback control strategy, with the constrain condition of braking strength and braking stability, combining experiments in ADVISOR, in different experiments of different working conditions, we can see that in UDDS Cycle, the regenerative braking efficiency is the best. What's more, compared with strategies in ADVISOR, strategy proposed in this paper is obviously better.展开更多
Based on the control theories of PID, fuzzy logic and expert PID, the driver models are built and applied in the forward simulation for hybrid electric vehicles (HEV). The impact to the vehicle speed tracking and th...Based on the control theories of PID, fuzzy logic and expert PID, the driver models are built and applied in the forward simulation for hybrid electric vehicles (HEV). The impact to the vehicle speed tracking and the fuel economy is compared among the different driver models. The different human-simulated characteristics of the driver models are emphatically analyzed. The analysis results indicate that the driver models based on PID, simple fuzzy logic and expert PID are corresponding to the handling characteristics of different drives. The driver models of different human-simulated characteristics bring the handling divergence of drivers with different driving level and habit to the HEV forward simulation, and that is significant to the all-around verification and validation of the control strategy for HEV. System simulation results of different driver models validate the impact of driver models to the dynamic and fuel economy performance of HEV.展开更多
Recently global warming and the depletion of fuel resources have accelerated researchers’ efforts to produce more efficient and clean alternatives. This research presents a comprehensive review of the different adjus...Recently global warming and the depletion of fuel resources have accelerated researchers’ efforts to produce more efficient and clean alternatives. This research presents a comprehensive review of the different adjustments/con figurations of electric vehicles (EVs) and hybrid electric vehicles (HEVs), traction motors for power systems, and wireless speed control of traction drive. Electronic installation of technology can reduce pollution efficiently and effectively. The efficient operation has always been one of the most common investigators’ objectives in the automotive industry and academic areas. There are several renewable energy resources for hybrid vehicles that will replace depleted gasoline worldwide. The purpose of this paper is the development of more efficient pure EVs, HEVs, and fuel cell electric vehicles (FCEV) present both a challenge and a definite solution to current mobility issues. Fuel consumption in cars is a concern due to the harmful effects on the environment. Among other battery sources, fuel cells (FC), super capacitors (SC), and photovoltaic cells are studied for vehicle application. A combination of these renewable energy sources can be used for hybrid electric vehicles (HEV) in the next generation of transportation. With the significant progress of automobile technology, the hybrid electric vehicle has already become the main achievement of transportation electrification due to its excellent fuel-saving performance.展开更多
In this paper,three partitioned-stator(PS)machines,namely the PS flux-switching DC-field(PS-FSDC)machine,the PS-FS hybrid-excitation(PS-FSHE)machine,and the flux adjuster FS permanent-magnet(FA-FSPM)machine are propos...In this paper,three partitioned-stator(PS)machines,namely the PS flux-switching DC-field(PS-FSDC)machine,the PS-FS hybrid-excitation(PS-FSHE)machine,and the flux adjuster FS permanent-magnet(FA-FSPM)machine are proposed.With different flux-regulating mechanisms,all three proposed machines can offer satisfactory flux-weakening capabilities for wide-speed range operations.Unlike the traditional PS machine that installs the armature windings and the excitation sources in the outer-stator and inner-stator,respectively;the proposed machines purposely swap the installation arrangements.Upon the proposed structure,the FA-FSPM machine can fully utilize the stator core for PM material accommodations.As a result,excellent power and torque densities can be achieved.To verify the proposed concepts,these three PS machines are quantitatively compared based on the hybrid electric vehicle(HEV)specifications.展开更多
Braking on low adhesion-coefficient roads, hybrid electric vehicle's motor regenerative torque is switched off to safeguard the normal anti-lock braking system (ABS) fimction. When the ABS control is terminated, th...Braking on low adhesion-coefficient roads, hybrid electric vehicle's motor regenerative torque is switched off to safeguard the normal anti-lock braking system (ABS) fimction. When the ABS control is terminated, the motor regenerative braking is readmitted. Aiming at avoiding permanent cycles from hydraulic anti-lock braking to motor regenerative braking, a novel electro-mechanical hybrid anti-lock braking system using fuzzy logic is designed. Different from the traditional single control structure, this system has a two-layered hierarchical structure, The first layer is responsible for harmonious adjustment or interaction between regenerative system and anti-lock braking system. The second layer is responsible for braking torque distribution and adjustment. The closed-loop simulation model is built. Control strategy and method for coordination between regenerative and anti-lock braking are developed. Simulation braking on low adhesion-coefficient roads with fuzzy logic control and real vehicle braking field test are presented. The results from simulating analysis and experiment show braking performance of the vehicle is perfect, harmonious coordination between regenerative and anti-lock braking function, significant amount of braking energy can be recovered and the proposed control strategy and method are effective.展开更多
文摘Plug-in Hybrid Electric Vehicles(PHEVs)represent an innovative breed of transportation,harnessing diverse power sources for enhanced performance.Energy management strategies(EMSs)that coordinate and control different energy sources is a critical component of PHEV control technology,directly impacting overall vehicle performance.This study proposes an improved deep reinforcement learning(DRL)-based EMSthat optimizes realtime energy allocation and coordinates the operation of multiple power sources.Conventional DRL algorithms struggle to effectively explore all possible state-action combinations within high-dimensional state and action spaces.They often fail to strike an optimal balance between exploration and exploitation,and their assumption of a static environment limits their ability to adapt to changing conditions.Moreover,these algorithms suffer from low sample efficiency.Collectively,these factors contribute to convergence difficulties,low learning efficiency,and instability.To address these challenges,the Deep Deterministic Policy Gradient(DDPG)algorithm is enhanced using entropy regularization and a summation tree-based Prioritized Experience Replay(PER)method,aiming to improve exploration performance and learning efficiency from experience samples.Additionally,the correspondingMarkovDecision Process(MDP)is established.Finally,an EMSbased on the improvedDRLmodel is presented.Comparative simulation experiments are conducted against rule-based,optimization-based,andDRL-based EMSs.The proposed strategy exhibitsminimal deviation fromthe optimal solution obtained by the dynamic programming(DP)strategy that requires global information.In the typical driving scenarios based onWorld Light Vehicle Test Cycle(WLTC)and New European Driving Cycle(NEDC),the proposed method achieved a fuel consumption of 2698.65 g and an Equivalent Fuel Consumption(EFC)of 2696.77 g.Compared to the DP strategy baseline,the proposed method improved the fuel efficiency variances(FEV)by 18.13%,15.1%,and 8.37%over the Deep QNetwork(DQN),Double DRL(DDRL),and original DDPG methods,respectively.The observational outcomes demonstrate that the proposed EMS based on improved DRL framework possesses good real-time performance,stability,and reliability,effectively optimizing vehicle economy and fuel consumption.
基金supported by National Natural Science Foundation of China(Grant No.51005017)
文摘Now the optimization strategies for power distribution are researched widely, and most of them are aiming to the optimal fuel economy and the driving cycle must be preknown. Thus if the actual driving condition deviates from the scheduled driving cycle, the effect of optimal results will be declined greatly. Therefore, the instantaneous optimization strategy carried out on-line is studied in this paper. The power split path and the transmission efficiency are analyzed based on a special power-split scheme and the efficiency models of the power transmitting components are established. The synthetical efficiency optimization model is established for enhancing the transmission efficiency and the fuel economy. The identification of the synthetical efficiency as the optimization objective and the constrain group are discussed emphatically. The optimization is calculated by the adaptive simulated annealing (ASA) algorithm and realized on-line by the radial basis function (RBF)-based similar models. The optimization for power distribution of the hybrid vehicle in an actual driving condition is carried out and the road test results are presented. The test results indicate that the synthetical efficiency optimization method can enhance the transmission efficiency and the fuel economy of the power-split hybrid electric vehicle (HEV) observably. Compared to the rules-based strategy the optimization strategy is optimal and achieves the approximate global optimization solution for the power distribution. The synthetical efficiency optimization solved by ASA algorithm can give attentions to both optimization quality and calculation efficiency, thus it has good application foreground for the power distribution of power-split HEV.
基金National Hi-tech Research end Development Program of China (863 Program,No.2002AA501700,No.2003AA501012)
文摘A novel steady-state optimization (SSO) of internal combustion engine (ICE) strategy is proposed to maximize the efficiency of the overall powertrain for hybrid electric vehicles, in which the ICE efficiency, the efficiencies of the electric motor (EM) and the energy storage device are all explicitly taken into account. In addition, a novel idle optimization of ICE strategy is implemented to obtain the optimal idle operating point of the ICE and corresponding optimal parking generation power of the EM using the view of the novel SSO of ICE strategy. Simulations results show that potential fuel economy improvement is achieved relative to the conventional one which only optimized the ICE efficiency by the novel SSO of ICE strategy, and fuel consumption per voltage increment decreases a lot during the parking charge by the novel idle optimization of ICE strategy.
基金This project is supported by Electric Vehicle Key Project of National 863 Program of China (No.2001AA501200, 2001AA501211).
文摘Energy management strategy (EMS) is the core of the real-time controlalgorithm of the hybrid electric vehicle (HEV). A novel EMS using the logic threshold approach withincorporation of a stand-by optimization algorithm is proposed. The aim of it is to minimize theengine fuel consumption and maintain the battery state of charge (SOC) in its operation range, whilesatisfying the vehicle performance and drivability requirements. The hybrid powertrain bench testis carried out to collect data of the engine, motor and battery pack, which are used in the EMS tocontrol the powertrain. Computer simulation model of the HEV is established in the MATLAB/Simulinkenvironment according to the bench test results. Simulation results are presented for behaviors ofthe engine, motor and battery. The proposed EMS is implemented for a real parallel hybrid carcontrol system and validated by vehicle field tests.
文摘The paper proposes an adoption of slope,elevation,speed and route distance preview to achieve optimal energymanagement of plug-in hybrid electric vehicles(PHEVs).Theapproach is to identify route features from historical and real-time traffic data,in which information fusion model and trafficprediction model are used to improve the information accuracy.Then,dynamic programming combined with equivalent con-sumption minimization strategy is used to compute an optimalsolution for real-time energy management.The solution is thereference for PHEV energy management control along the route.To improve the system's ability of handling changing situation,the study further explores predictive control model in the real-time control of the energy.A simulation is performed to modelPHEV under above energy control strategy with route preview.The results show that the average fuel consumption of PHEValong the previewed route with model predictive control(MPC)strategy can be reduced compared with optimal strategy andbase control strategy.
基金Supported by National Key Technology R&D Program of Ministry of Science and Technology of China(Grant No.2013BAG14B01)
文摘Since the main power source of hybrid electric vehicle(HEV) is supplied by the power battery,the predicted performance of power battery,especially the state-of-charge(SOC) estimation has attracted great attention in the area of HEV.However,the value of SOC estimation could not be greatly precise so that the running performance of HEV is greatly affected.A variable structure extended kalman filter(VSEKF)-based estimation method,which could be used to analyze the SOC of lithium-ion battery in the fixed driving condition,is presented.First,the general lower-order battery equivalent circuit model(GLM),which includes column accumulation model,open circuit voltage model and the SOC output model,is established,and the off-line and online model parameters are calculated with hybrid pulse power characteristics(HPPC) test data.Next,a VSEKF estimation method of SOC,which integrates the ampere-hour(Ah) integration method and the extended Kalman filter(EKF) method,is executed with different adaptive weighting coefficients,which are determined according to the different values of open-circuit voltage obtained in the corresponding charging or discharging processes.According to the experimental analysis,the faster convergence speed and more accurate simulating results could be obtained using the VSEKF method in the running performance of HEV.The error rate of SOC estimation with the VSEKF method is focused in the range of 5% to 10% comparing with the range of 20% to 30% using the EKF method and the Ah integration method.In Summary,the accuracy of the SOC estimation in the lithium-ion battery cell and the pack of lithium-ion battery system,which is obtained utilizing the VSEKF method has been significantly improved comparing with the Ah integration method and the EKF method.The VSEKF method utilizing in the SOC estimation in the lithium-ion pack of HEV can be widely used in practical driving conditions.
文摘An electrical equivalent circuit model for lithium-ion batteries used for hybrid electric vehicles (HEV) is presented. The model has two RC networks characterizing battery activation and concentration polarization process. The parameters of the model are identified using combined experimental and extended Kalman filter (EKF) recursive methods. The open-circuit voltage and ohmic resistance of the battery are directly measured and calculated from experimental measurements, respectively. The rest of the coupled dynamic parameters, i.e. the RC network parameters, are estimated using the EKF method. Experimental and simulation results are presented to demonstrate the efficacy of the proposed circuit model and parameter identification techniques for simulating battery dynamics.
基金supported in part by the National Natural Science Foundation of China(61773382,61773381,61533019)Chinese Guangdongs S&T projects(2016B090910001,2017B090912001)+1 种基金2016 S&T Benefiting Special Project(16-6-2-62-nsh)of Qingdao Achievements Transformation ProgramDongguan Innovation Talents Project(Gang Xiong)
文摘With most countries paying attention to the environment protection, hybrid electric vehicles have become a focus of automobile research and development due to the characteristics of energy saving and low emission. Power follower control strategy(PFCS) and DC-link voltage control strategy are two sorts of control strategies for series hybrid electric vehicles(HEVs). Combining those two control strategies is a new idea for control strategy of series hybrid electric vehicles. By tuning essential parameters which are the defined constants under DClink voltage control and under PFCS, the points of minimum mass of equivalent fuel consumption(EFC) corresponding to a series of variables are marked for worldwide harmonized light vehicles test procedure(WLTP). The fuel economy of series HEVs with the combination control schemes performs better compared with individual control scheme. The results show the effects of the combination control schemes for series HEVs driving in an urban environment.
文摘This paper reviews various hybrid excited(HE)machines from the perspective of location of PM and DC excitation,series/parallel connection of PM and DC excited magnetic fields,and 2D/3D magnetic fields,respectively.The advantages as well as drawbacks of each category are analyzed.Since an additional control degree,i.e.DC excitation,is introduced in the HE machine,the flux weakening control strategies are more complex.The flux weakening performance as well as efficiency are compared with different control strategies.Then,the potential to mitigate the risk of uncontrolled overvoltage fault at high speed operation is highlighted by controlling the field excitation.Since additional DC coils are usually required for HE machines compared with pure PM excitation,the spatial confliction inevitably results in electromagnetic performance reduction.Finally,the technique to integrate the field and armature windings with open-winding drive circuit is introduced,and novel HE machines without a DC coil are summarized.
基金Supported by the National High Technology Research and Development Program of China(2011AA11A252)
文摘The operating mode of a single shaft hybrid electric vehicle (SSHEV) in which the electric motor exerts negative torque on the shaft to imitate engine braking is analyzed. The method of determining the quantity of regenerative braking torque is proposed with the premise that the braking intensity required by the driver is satisfied. On this basis, factors that affect torque generated by the motor are listed, and how the battery' s temperature and state of charge ( SOC ) restrict and correct the braking torque is expounded. Finally, road test results show that the motor' s constant power or constant torque control is an effective way to recover the mechanical energy during decelerating.
文摘In this paper, a plug-in hybrid electrical vehicle(PHEV) is taken as the research object, and its dynamic performance and economic performance are taken as the research goals. Battery charge-sustaining(CS) period is divided into power mode and economy mode. Energy management strategy designing methods of power mode and economy mode are proposed. Maximum velocity, acceleration performance and fuel consumption are simulated during the CS period in the AVL CRUISE simulation environment. The simulation results indicate that the maximum velocity and acceleration time of the power mode are better than those in the economy mode. Fuel consumption of the economy mode is better than that in the power mode. Fuel consumption of PHEV during the CS period is further improved by using the methods proposed in this paper, and this is meaningful for research and development of PHEV.
基金Funded by National Natural Science Foundation of China(No.51305472)National Natural Science Foundation of Chongqing Science and Technology Committee(No.cstc2014jcyj A60005)Natural Science Foundation of Chongqing Education Committee(No.KJ1400312)
文摘Aiming to reduce fuel consumption and emissions of a dual-clutch hybrid electric vehicle during cold start, multiobjective optimization for fuel consumption and HC/CO emission from a TWC(three-way catalytic converter) outlet is presented in this paper. DP(dynamic programming) considering dual-state variables is proposed based on the Bellman optimality principle. Both the battery SOC(state of charge) and the temperature of TWC monolith are considered in the algorithm simultaneously. In this way the global optimal control strategy and the Pareto optimal solution of multi-objective function are derived. Simulation results show that the proposed method is able to promote the TWC light-off significantly by decreasing the engine's load and improving exhaust temperature from the outlet of the engine, in comparison with original DP considering the single battery SOC. Compared to the results achieved by rule-based control strategy, fuel economy and emission of TWC outlet for cold start are optimized comprehensively. Each indicator of Pareto solution set shows the significant improvement.
基金This work was supported by the Key Research and Development Program of Shandong Province(Grant No.2019JZZY010912)the Key Research and Development Program of Shandong Province(Grant No.2020CXGC010406)。
文摘Fuel cell hybrid electric vehicles are currently being considered as ideal means to solve the energy crisis and global warming in today’s society.In this context,this paper proposes a method to solve the problem related to the dependence of the so-called optimal equivalent factor(determined in the framework of the equivalent consumption minimum strategy-ECMS)on the working conditions.The simulation results show that under typical conditions(some representative cities being considered),the proposed strategy can maintain the power balance;for different initial battery’s states of charge(SOC),after the SOC stabilizes,the fuel consumption is 5.25 L/100 km.
文摘As government agencies continue to tighten emissions regulations due to the continued increase in greenhouse gas production, automotive industries are seeking to produce increasingly efficient vehicle technology. Hybrid electric vehicles (HEVs) have been introduced to mitigate problems while improving fuel economy. HEVs have led to the demand of creating more advanced controls software to consider multiple components for propulsive power in a vehicle. A large section in the software development process is the implementation of an optimal energy management strategy meant to improve the overall fuel efficiency of the vehicle. Optimal strategies can be implemented when driving conditions are known a prior. The Equivalent Consumption Minimization Strategy (ECMS) is an optimal control strategy that uses an equivalence factor to equate electrical to mechanical power when performing torque split determination between the internal combustion engine and electric motor for propulsive and regenerative torque. This equivalence factor is determined from offline vehicle simulations using a sensitivity analysis to provide optimal fuel economy results while maintaining predetermined high voltage battery state of charge (SOC) constraints. When the control hierarchy is modified or different driving styles are applied, the analysis must be redone to update the equivalence factor. The goal of this work is to implement a fuzzy logic controller that dynamically updates the equivalence factor to improve fuel economy, maintain a strict charge sustaining window of operation for the high voltage battery, and reduce computational time required during algorithm development. The adaptive algorithm is validated against global optimum fuel economy and charge sustaining results from a sensitivity analysis performed for multiple drive cycles. Results show a maximum fuel economy improvement of 9.82% when using a mild driving style and a 95% success rate when maintaining an ending SOC within 5% of the desired SOC regardless of starting SOC.
文摘The transportation sector is responsible for 25% of the total Carbon dioxide (CO2) emissions, whereas 60.6% of this sector represents small and medium passenger cars. However, as noted by the European Union Long-term strategy, there are two ways to reduce the amount of CO2 emissions in the transportation sector. The first way is characterized by creating more efficient vehicles. In contrast, the second way is characterized by changing the fuel used. The current study addressed the second way, changing the fuel type. The study examined the potential of battery electric vehicles (BEVs) as an alternative fuel type to reduce CO2 emissions in Hungarys transportation sector. The study used secondary data retrieved from Statista and stata.com to analyze the future trends of BEVs in Hungary. The results showed that the percentage of BEVs in Hungary in 2022 was 0.4% compared to the total number of registered passenger cars, which is 3.8 million. The simple exponential smoothing (SES) time series forecast revealed that the number of BEVs is expected to reach 84,192 in 2030, indicating a percentage increase of 2.21% in the next eight years. The study suggests that increasing the number of BEVs is necessary to address the negative impact of CO2 emissions on society. The Hungarian Ministry of Innovation and Technologys strategy to reduce the cost of BEVs may increase the percentage of BEVs by 10%, resulting in a potential average reduction of 76,957,600 g/km of CO2 compared to gasoline, diesel, hybrid electric vehicles (HEVs), and plug-in hybrid vehicles (PHEVs).
基金Supported by National Natural Science Foundation of China(No.61370088)International Scientific and Technological Cooperation Projects of China(No.2012DFB10060)Topic of the Ministry of Education about Humanities and Social Sciences of China(No.12JDGC007)
文摘In this paper, the hybrid electric vehicle braking process is researched, by using variables consists of HEV speed, motor speed, and state of charge established, fimctions of mechanical braking force, regenerative braking force and efficiency of energy recovery are constructed, and the control goal is to maximization the energy recovery efficiency. Under the feedback control strategy, with the constrain condition of braking strength and braking stability, combining experiments in ADVISOR, in different experiments of different working conditions, we can see that in UDDS Cycle, the regenerative braking efficiency is the best. What's more, compared with strategies in ADVISOR, strategy proposed in this paper is obviously better.
基金Supported by the National Natural Science Foundation of China(50905018)
文摘Based on the control theories of PID, fuzzy logic and expert PID, the driver models are built and applied in the forward simulation for hybrid electric vehicles (HEV). The impact to the vehicle speed tracking and the fuel economy is compared among the different driver models. The different human-simulated characteristics of the driver models are emphatically analyzed. The analysis results indicate that the driver models based on PID, simple fuzzy logic and expert PID are corresponding to the handling characteristics of different drives. The driver models of different human-simulated characteristics bring the handling divergence of drivers with different driving level and habit to the HEV forward simulation, and that is significant to the all-around verification and validation of the control strategy for HEV. System simulation results of different driver models validate the impact of driver models to the dynamic and fuel economy performance of HEV.
文摘Recently global warming and the depletion of fuel resources have accelerated researchers’ efforts to produce more efficient and clean alternatives. This research presents a comprehensive review of the different adjustments/con figurations of electric vehicles (EVs) and hybrid electric vehicles (HEVs), traction motors for power systems, and wireless speed control of traction drive. Electronic installation of technology can reduce pollution efficiently and effectively. The efficient operation has always been one of the most common investigators’ objectives in the automotive industry and academic areas. There are several renewable energy resources for hybrid vehicles that will replace depleted gasoline worldwide. The purpose of this paper is the development of more efficient pure EVs, HEVs, and fuel cell electric vehicles (FCEV) present both a challenge and a definite solution to current mobility issues. Fuel consumption in cars is a concern due to the harmful effects on the environment. Among other battery sources, fuel cells (FC), super capacitors (SC), and photovoltaic cells are studied for vehicle application. A combination of these renewable energy sources can be used for hybrid electric vehicles (HEV) in the next generation of transportation. With the significant progress of automobile technology, the hybrid electric vehicle has already become the main achievement of transportation electrification due to its excellent fuel-saving performance.
基金This work was supported by Croucher Foundation,Hong Kong Special Administrative Region,China and Jiangsu Xinri E-Vehicle Co.,Ltd.,Wuxi,Jiangsu,China.
文摘In this paper,three partitioned-stator(PS)machines,namely the PS flux-switching DC-field(PS-FSDC)machine,the PS-FS hybrid-excitation(PS-FSHE)machine,and the flux adjuster FS permanent-magnet(FA-FSPM)machine are proposed.With different flux-regulating mechanisms,all three proposed machines can offer satisfactory flux-weakening capabilities for wide-speed range operations.Unlike the traditional PS machine that installs the armature windings and the excitation sources in the outer-stator and inner-stator,respectively;the proposed machines purposely swap the installation arrangements.Upon the proposed structure,the FA-FSPM machine can fully utilize the stator core for PM material accommodations.As a result,excellent power and torque densities can be achieved.To verify the proposed concepts,these three PS machines are quantitatively compared based on the hybrid electric vehicle(HEV)specifications.
基金supported by National Development and Reform Commission of China (Grant No. 2005934)
文摘Braking on low adhesion-coefficient roads, hybrid electric vehicle's motor regenerative torque is switched off to safeguard the normal anti-lock braking system (ABS) fimction. When the ABS control is terminated, the motor regenerative braking is readmitted. Aiming at avoiding permanent cycles from hydraulic anti-lock braking to motor regenerative braking, a novel electro-mechanical hybrid anti-lock braking system using fuzzy logic is designed. Different from the traditional single control structure, this system has a two-layered hierarchical structure, The first layer is responsible for harmonious adjustment or interaction between regenerative system and anti-lock braking system. The second layer is responsible for braking torque distribution and adjustment. The closed-loop simulation model is built. Control strategy and method for coordination between regenerative and anti-lock braking are developed. Simulation braking on low adhesion-coefficient roads with fuzzy logic control and real vehicle braking field test are presented. The results from simulating analysis and experiment show braking performance of the vehicle is perfect, harmonious coordination between regenerative and anti-lock braking function, significant amount of braking energy can be recovered and the proposed control strategy and method are effective.