The wheel-rail adhesion control for regenerative braking systems of high speed electric multiple unit trains is crucial to maintaining the stability,improving the adhesion utilization,and achieving deep energy recover...The wheel-rail adhesion control for regenerative braking systems of high speed electric multiple unit trains is crucial to maintaining the stability,improving the adhesion utilization,and achieving deep energy recovery.There remain technical challenges mainly because of the nonlinear,uncertain,and varying features of wheel-rail contact conditions.This research analyzes the torque transmitting behavior during regenerative braking,and proposes a novel methodology to detect the wheel-rail adhesion stability.Then,applications to the wheel slip prevention during braking are investigated,and the optimal slip ratio control scheme is proposed,which is based on a novel optimal reference generation of the slip ratio and a robust sliding mode control.The proposed methodology achieves the optimal braking performancewithoutthewheel-railcontactinformation.Numerical simulation results for uncertain slippery rails verify the effectiveness of the proposed methodology.展开更多
In this paper,a numerical simulation model of the flow field in a gearbox with an oil volume adjusting device is established for the first time to study its influence on the lubrication characteristics of a high-speed...In this paper,a numerical simulation model of the flow field in a gearbox with an oil volume adjusting device is established for the first time to study its influence on the lubrication characteristics of a high-speed electric multiple unit(EMU)gearbox.The moving particle semi-implicit(MPS)method is used to numerically simulate the internal flow field of the gearbox of the high-speed EMU under working conditions.The effects of the velocity of the high-speed EMU,the immersion depth,and the oil sump temperature on the power loss of the gears and the lubricant quantity of each bearing are studied and provide an effective tool for the quantitative evaluation of the lubrication characteristics of the gearbox.The lubrication characteristics of the gearbox under different working conditions are studied when the oil volume adjusting device is closed and opened.The results show that the oil volume adjusting device mainly changes the amount of lubricant stirred by the output gear by changing the flow rate of lubricant from the cavity pinion(Cavity P)to the cavity gear(Cavity G),and thus affects the power loss of gears and the lubricant quantity of each bearing.展开更多
With the improvement of the running speed of China’s high-speed trains,the demands for running status monitoring and security assurance of High-speed Electric Multiple Units(EMU)have increased significantly.However,t...With the improvement of the running speed of China’s high-speed trains,the demands for running status monitoring and security assurance of High-speed Electric Multiple Units(EMU)have increased significantly.However,the current safety monitoring systems are independent,which is not conducive to the comprehensive monitoring and information sharing of the whole vehicle.The temperature monitoring of running gear is insensitive to early failures.How to develop a train operation safety monitoring system with strong engineering implementation and high integration is a key problem to be solved.For the monitoring of running stationarity,frame stability and running gear health of China’s high-speed trains,an integrated safety monitoring system framework is designed,and the logic and algorithm for the diagnosis of stationarity,stability and health states of rotating parts are constructed.Monitoring software which fused the temperature,high and low frequency vibration data is developed,and the design and installation of the vibration temperature composite sensors are completed.The research results have realized the integration and comprehensive processing of multiple monitoring systems,completed the improvement from single component and vehicle-level safety monitoring to multi-system,train-level and interactive monitoring.In the process of real vehicle application,the developed monitoring system acquires the vehicle operation status data accurately and in real time.The constructed diagnosis algorithm and logic evaluates the vehicle operation status accurately and in a timely manner,and avoids the progression from fault to accident.The research results show that the integrated safety monitoring system can provide technical support for train operation safety.展开更多
基金supported by the National Natural Science Foundation of China(Grant 51305437)Guangdong Innovative Research Team Program of China(Grant201001D0104648280)
文摘The wheel-rail adhesion control for regenerative braking systems of high speed electric multiple unit trains is crucial to maintaining the stability,improving the adhesion utilization,and achieving deep energy recovery.There remain technical challenges mainly because of the nonlinear,uncertain,and varying features of wheel-rail contact conditions.This research analyzes the torque transmitting behavior during regenerative braking,and proposes a novel methodology to detect the wheel-rail adhesion stability.Then,applications to the wheel slip prevention during braking are investigated,and the optimal slip ratio control scheme is proposed,which is based on a novel optimal reference generation of the slip ratio and a robust sliding mode control.The proposed methodology achieves the optimal braking performancewithoutthewheel-railcontactinformation.Numerical simulation results for uncertain slippery rails verify the effectiveness of the proposed methodology.
基金supported by the Natural Science Foundation of Sichuan Province,China(Nos.2022NSFSC0034 and 2022NSFSC1901)the National Railway Group Science and Technology Program(No.N2021J028)+1 种基金the Independent Research and Development Projects of State Key Laboratory of Heavy Duty AC Drive Electric Locomotive Systems Integration(No.R111720H01385)the Independent Research and Development Projects of State Key Laboratory of Traction Power(No.2022TPL-T02),China。
文摘In this paper,a numerical simulation model of the flow field in a gearbox with an oil volume adjusting device is established for the first time to study its influence on the lubrication characteristics of a high-speed electric multiple unit(EMU)gearbox.The moving particle semi-implicit(MPS)method is used to numerically simulate the internal flow field of the gearbox of the high-speed EMU under working conditions.The effects of the velocity of the high-speed EMU,the immersion depth,and the oil sump temperature on the power loss of the gears and the lubricant quantity of each bearing are studied and provide an effective tool for the quantitative evaluation of the lubrication characteristics of the gearbox.The lubrication characteristics of the gearbox under different working conditions are studied when the oil volume adjusting device is closed and opened.The results show that the oil volume adjusting device mainly changes the amount of lubricant stirred by the output gear by changing the flow rate of lubricant from the cavity pinion(Cavity P)to the cavity gear(Cavity G),and thus affects the power loss of gears and the lubricant quantity of each bearing.
基金supported by the Major Special Projects in Chang-sha City(Grant No.kh2103015)the Natural Science Foundation of Hunan Province China(Grant No.2021JJ40765)+1 种基金Joint Funds of the National Natural Science Foundation of China(Grant No.U2268205)the Young Elite Scientists Sponsorship Program by CAST(Grant No.2020QNRC001).
文摘With the improvement of the running speed of China’s high-speed trains,the demands for running status monitoring and security assurance of High-speed Electric Multiple Units(EMU)have increased significantly.However,the current safety monitoring systems are independent,which is not conducive to the comprehensive monitoring and information sharing of the whole vehicle.The temperature monitoring of running gear is insensitive to early failures.How to develop a train operation safety monitoring system with strong engineering implementation and high integration is a key problem to be solved.For the monitoring of running stationarity,frame stability and running gear health of China’s high-speed trains,an integrated safety monitoring system framework is designed,and the logic and algorithm for the diagnosis of stationarity,stability and health states of rotating parts are constructed.Monitoring software which fused the temperature,high and low frequency vibration data is developed,and the design and installation of the vibration temperature composite sensors are completed.The research results have realized the integration and comprehensive processing of multiple monitoring systems,completed the improvement from single component and vehicle-level safety monitoring to multi-system,train-level and interactive monitoring.In the process of real vehicle application,the developed monitoring system acquires the vehicle operation status data accurately and in real time.The constructed diagnosis algorithm and logic evaluates the vehicle operation status accurately and in a timely manner,and avoids the progression from fault to accident.The research results show that the integrated safety monitoring system can provide technical support for train operation safety.