By using a first-principles approach, we investigate the pathway of electric displacement fields in shaped graded dielectric materials existing in the form of cloaks with various shapes. We reveal a type of apparently...By using a first-principles approach, we investigate the pathway of electric displacement fields in shaped graded dielectric materials existing in the form of cloaks with various shapes. We reveal a type of apparently negative electric polarization (ANEP), which is due to a symmetric oscillation of the paired electric permittivities, satisfying a sum rule. The ANEP does not occur for a spherical cloak, but appears up to maximum as a/b (the ratio between the long and short principal axis of the spheroidal cloak) is about 5/2, and eventually disappears as a/b becomes large enough corresponding to a rod-like shape. Further, the cloaking efficiency is calculated for different geometrical shapes and demonstrated to closely relate to the ANEP. The possibility of experiments is discussed. This work has relevance to dielectric shielding based on shaped graded dielectric materials.展开更多
The spin-orbit assisted Mott insulator α-RuCl_(3) is a prime candidate for material realization of the Kitaev quantum spin liquid.While little attention has been paid to charge degrees of freedom,charge effects,such ...The spin-orbit assisted Mott insulator α-RuCl_(3) is a prime candidate for material realization of the Kitaev quantum spin liquid.While little attention has been paid to charge degrees of freedom,charge effects,such as electric polarization,may arise in this system.Here,we report distortion-induced local electric polarization in α-RuCl_(3) as evidenced by single-crystal X-ray diffraction,second harmonic generation(SHG)and dielectric measurements.The SHG signal appears at room temperature and develops substantially in the Kitaev paramagnetic state when short-range spin correlations come into play.Despite sizable pyroelectric currents in the Kitaev paramagnetic state,the absence of hysteresis in the polarization-electric field(P-E)points to the shortrange nature of electric polarization.This localized electric polarization is likely the result of distortion-induced charge dimerization,achieved through virtual hopping-induced charge redistribution.In addition,the electric polarization is boosted by short-range spin correlations via spin-phonon coupling in the Kitaev paramagnetic state.Our results emphasize the importance of charge degrees of freedom in α-RuCl_(3),which establish a novel platform to investigate charge effects in Kitaev materials.展开更多
In binary compound 2D insulators/semiconductors such as hexagonal boron nitride(h BN), the different electron affinities of atoms can give rise to out-of-plane electric polarizations across inversion asymmetric van de...In binary compound 2D insulators/semiconductors such as hexagonal boron nitride(h BN), the different electron affinities of atoms can give rise to out-of-plane electric polarizations across inversion asymmetric van der Waals interface of near 0° interlayer twisting. Here we show that at a general stacking order where sliding breaks 2π/3-rotational symmetry, the interfacial charge redistribution also leads to an in-plane electric polarization, with a magnitude comparable to that of the out-of-plane ones.The effect is demonstrated in h BN bilayers, as well as in biased graphene bilayers with gate-controlled interlayer charge redistributions. In long wavelength moiré patterns, the in-plane electric polarizations determined by the local interlayer stacking registries constitute topologically nontrivial spatial textures. We show that these textures can be used to distinguish moirépatterns of different origins from twisting, biaxial-and uniaxial-heterostrain, where vector fields of electric polarizations feature Bloch-type merons, Néel-type merons, and anti-merons, respectively. Combinations of twisting and heterostrain can further be exploited for engineering various electric polarization textures including 1D quasiperiodic lattices.展开更多
Two‐dimensional(2D)ferroelectrics have attracted considerable attention due to their potential in the development of devices of miniaturization and multifunction.Although several van der Waals(vdW)‐layered materials...Two‐dimensional(2D)ferroelectrics have attracted considerable attention due to their potential in the development of devices of miniaturization and multifunction.Although several van der Waals(vdW)‐layered materials show ferroelectricity,the experimental demonstrations of ferroelectric behavior in monolayers are very limited.Here we report the observation of room‐temperature out‐of‐plane switchable electric polarization in supported MoS_(2) monolayers exfoliated from 3R‐stacked bulk crystals under ambient conditions.Using in situ piezoelectric force microscopy and Kelvin probe force microscopy in a glovebox,we reveal that trapped water/ice molecules are responsible for this switchable electric polarization and this conclusion is strongly supported by theoretical simulations.It is worth noting that the water/ice trapping in the monolayers exfoliated from 2H‐stacked MoS_(2) crystals is not as much as that in 3R monolayers and,consequently,the out‐of‐plane electric polarization is missing there.Our findings indicate that monolayers with a trapped single layer of polar molecules might be emerging alternatives to 2D ferroelectrics.Furthermore,the stacking sequences may bring new properties and applications to 2D vdW materials not only when we stack them up but also when we thin them down.展开更多
Since the beginning of research on two-dimensional(2D)materials,a few numbers of 2D ferroelectric materials have been predicted or experimentally confirmed,but 2D ferroelectrics as necessary functional materials are g...Since the beginning of research on two-dimensional(2D)materials,a few numbers of 2D ferroelectric materials have been predicted or experimentally confirmed,but 2D ferroelectrics as necessary functional materials are greatly important in developing future electronic devices.Recent breakthroughs in 2D ferroelectric materials are impressive,and the physical and structural properties of twisted 2D ferroelectrics,a new type of ferroelectric structure by rotating alternating monolayers to form an angle with each other,have attracted widespread interest and discussion.Here,we review the latest research on twisted 2D ferroelectrics,including Bernal-stacked bilayer graphene/BN,bilayer boron nitride,and transition metal dichalcogenides.Finally,we prospect the development of twisted 2D ferroelectrics and discuss the challenges and future of 2D ferroelectric materials.展开更多
By making use of the quasi-two-dimensional (quasi-2D) model, the current-voltage (l-V) characteristics of In0AsA10.82N/A1N/GaN heterostructure field-effect transistors (HFETs) with different gate lengths are sim...By making use of the quasi-two-dimensional (quasi-2D) model, the current-voltage (l-V) characteristics of In0AsA10.82N/A1N/GaN heterostructure field-effect transistors (HFETs) with different gate lengths are simulated based on the measured capacitance-voltage (C-V) characteristics and I-V characteristics. By analyzing the variation of the electron mobility for the two-dimensional electron gas (2DEG) with electric field, it is found that the different polarization charge distributions generated by the different channel electric field distributions can result in different polarization Coulomb field scatterings. The difference between the electron mobilities primarily caused by the polarization Coulomb field scatterings can reach up to 1522.9 cm2/V.s for the prepared In0.38AI0.82N/A1N/GaN HFETs. In addition, when the 2DEG sheet density is modulated by the drain-source bias, the electron mobility presents a peak with the variation of the 2DEG sheet density, the gate length is smaller, and the 2DEG sheet density corresponding to the peak point is higher.展开更多
We study the ferroelectricity in a one-dimensional(1D)system composed of a double helix SnIP with absorbing water molecules.Our ab initio calculations reveal two factors that are critical to the electrical polarizatio...We study the ferroelectricity in a one-dimensional(1D)system composed of a double helix SnIP with absorbing water molecules.Our ab initio calculations reveal two factors that are critical to the electrical polarization.The first one is the orientation of polarized water molecules staying in the R2 region of SnIP.The second one is the displacement of I atom which roots from subtle interaction with absorbed water molecules.A reasonable scenario of polarization flipping is proposed in this study.In the scenario,the water molecule is rolling-up with keeping the magnitude of its electrical dipole and changing its direction,meanwhile,the displacement of I atoms is also reversed.Highly tunable polarization can be achieved by applying strain,with 26.5%of polarization enhancement by applying tensile strain,with only 4%degradation is observed with 4%compressive strain.Finally,the direct band gap is also found to be correlated with strain.展开更多
In the light of fractal geometry theory, the characteristics of coal's electric parameters (including dielectric constant, alternating conductivity, dielectric loss angle tangent and electric polarization constant...In the light of fractal geometry theory, the characteristics of coal's electric parameters (including dielectric constant, alternating conductivity, dielectric loss angle tangent and electric polarization constant) were studied by using literature data. The results are shown that the electrical properties of coal have fractal characteristic. The fractal dimensions of dielectric, alternating conductivity, dielectric loss angle tangent were obtained, and are relative to the content of pyrite sulfur, heat and ash content of coal.展开更多
We theoretically and numerically demonstrate that a transmission-type electrically tunable polarizer can be realized by using graphene ribbons supported on a dielectric film with a graphene sheet behind. The polarizat...We theoretically and numerically demonstrate that a transmission-type electrically tunable polarizer can be realized by using graphene ribbons supported on a dielectric film with a graphene sheet behind. The polarization mechanism originates from the antenna plasmon resonance of graphene stripes. The results of full-wave numerical simulations reveal that transmittance of 0.70 for one polarization and 0.0073 for another polarization can be obtained at normal incidence. The transmission-type electrically tunable polarizer provides and facilitates a variety of applications, including filtering, detecting, and imaging.展开更多
The strong polarization effect of GaN-based materials is widely used in high-performance devices such as white-lightemitting diodes(white LEDs),high electron mobility transistors(HEMTs),and GaN polarization superjunct...The strong polarization effect of GaN-based materials is widely used in high-performance devices such as white-lightemitting diodes(white LEDs),high electron mobility transistors(HEMTs),and GaN polarization superjunctions.However,the current researches on the polarization mechanism of GaN-based materials are not sufficient.In this paper,we studied the influence of polarization on electric field and energy band characteristics of Ga-face GaN bulk materials by using a combination of theoretical analysis and semiconductor technology computer-aided design(TCAD) simulation.The selfscreening effect in Ga-face bulk GaN under ideal and non-ideal conditions is studied respectively.We believe that the formation of high-density two-dimensional electron gas(2 DEG) in GaN is the accumulation of screening charges.We also clarify the source and accumulation of the screening charges caused by the GaN self-screening effect in this paper and aim to guide the design and optimization of high-performance GaN-based devices.展开更多
A theoretical investigation is presented on the characteristics of the kinetic magnetoelectric effect in laterally boundary-confined ballistic two-dimensional hole gases. It was shown that, though the momentum-depende...A theoretical investigation is presented on the characteristics of the kinetic magnetoelectric effect in laterally boundary-confined ballistic two-dimensional hole gases. It was shown that, though the momentum-dependent effective magnetic fields felt by charge carriers due to the spin-orbit interaction are in-plane orientated in such systems, both in-plane polarized and normal polarized nonequilibrium spin polarization densities could be electrically induced by the kinetic magnetoelectric effect, and the induced nonequilibrium spin polarizations exhibit some interesting characteristics. The characteristics we found indicate that there may be some possible relation between this effect and some recent experimental findings.展开更多
By dispersing La1-xSrxMnO3 (LSMO) granule into PbZrxTi1-xO3 (PZT) matrix, the 0-3 type LSMO/PZT composite film is synthesized through chemical solution method. The asymmetry of the top and bottom electrodes introduces...By dispersing La1-xSrxMnO3 (LSMO) granule into PbZrxTi1-xO3 (PZT) matrix, the 0-3 type LSMO/PZT composite film is synthesized through chemical solution method. The asymmetry of the top and bottom electrodes introduces novel electrostatic screening on LSMO/PZT interface. As electric polarization is switched between upward and downward orientations, the evolution of exchange bias, diode transport, and magnetoresistance is observed. The result implies the electrostatic switch of magnetic core-shell in the present film. In detail, as the spontaneous polarization is upward or downward in the PZT matrix, the ferromagnetic/antiferromagnetic or ferromagnetic/ferromagnetic core-shell structure is formed in LSMO granule, respectively. This work would develop a novel device for spintronics and metamaterial.展开更多
Stem cells from human exfoliated deciduous teeth(SHED)uniquely exhibit high proliferative and neurogenic potential.Charged biomaterials have been demonstrated to promote neural differentiation of stem cells,but the do...Stem cells from human exfoliated deciduous teeth(SHED)uniquely exhibit high proliferative and neurogenic potential.Charged biomaterials have been demonstrated to promote neural differentiation of stem cells,but the dose-response effect of electrical stimuli from these materials on neural differentiation of SHED remains to be elucidated.Here,by utilizing different annealing temperatures prior to corona poling treatment,BaTiO_(3)/P(VDF-TrFE)ferroelectric nanocomposite membranes with varying charge polarization intensity(d_(33)≈0,4,12 and 19 pC N^(-1))were fabricated.Enhanced expression of neural markers,increased cell elongation and more prominent neurite outgrowths were observed with increasing surface charge of the nanocomposite membrane indicating a dose-response effect of surface electrical charge on SHED neural differentiation.Further investigations of the underlying molecular mechanisms revealed that intracellular calcium influx,focal adhesion formation,FAK-ERK mechanosensing pathway and neurogenic-related ErbB signaling pathway were implicated in the enhancement of SHED neural differentiation by surface electrical charge.Hence,this study confirms the dose-response effect of biomaterial surface charge on SHED neural differentiation and provides preliminary insights into the molecular mechanisms and signaling pathways involved.展开更多
This paper briefly reviews ionospheric irregularities that occur in the E and F regions at mid-latitudes. Sporadic E(ES) is a common ionospheric irregularity phenomenon that is first noticed in the E layer. ES mainly ...This paper briefly reviews ionospheric irregularities that occur in the E and F regions at mid-latitudes. Sporadic E(ES) is a common ionospheric irregularity phenomenon that is first noticed in the E layer. ES mainly appears during daytime in summer hemispheres, and is formed primarily from neutral wind shear in the mesosphere and lower thermosphere(MLT) region. Field-aligned irregularity(FAI) in the E region is also observed by Very High Frequency(VHF) radar in mid-latitude regions. FAI frequently occurs after sunset in summer hemispheres, and spectrum features of E region FAI echoes suggest that type-2 irregularity is dominant in the nighttime ionosphere. A close relationship between ES and E region FAI implies that ES may be a possible source of E region FAI in the nighttime ionosphere. Strong neutral wind shear, steep ES plasma density gradient, and a polarized electric field are the significant factors affecting the formation of E region FAI. At mid-latitudes, joint observational experiments including ionosonde, VHF radar, Global Positioning System(GPS) stations, and all-sky optical images have revealed strong connections across different scales of ionospheric irregularities in the nighttime F region, such as spread F(SF), medium-scale traveling ionospheric disturbances(MSTID), and F region FAI.Observations suggest that different scales of ionospheric irregularities are generally attributed to the Perkins instability and subsequently excited gradient drift instability. Nighttime MSTID can further evolve into small-scale structures through a nonlinear cascade process when a steep plasma density gradient exists at the bottom of the F region. In addition, the effect of ionospheric electrodynamic coupling processes, including ionospheric E-F coupling and inter-hemispheric coupling on the generation of ionospheric irregularities, becomes more prominent due to the significant dip angle and equipotentiality of magnetic field lines in the mid-latitude ionosphere. Polarized electric fields can map to different ionospheric regions and excite plasma instabilities which form ionospheric irregularities. Nevertheless,the mapping efficiency of a polarized electric field depends on the ionospheric background and spatial scale of the field.展开更多
In this article there is an aim to build a realistic electronic model of this amazing molecule, this perhaps will be the basis for constructing of molecular computers. DNA molecule making the complexes with histones a...In this article there is an aim to build a realistic electronic model of this amazing molecule, this perhaps will be the basis for constructing of molecular computers. DNA molecule making the complexes with histones and other proteines, their electrostatic interaction cause the electrical polarisation and charges formation on this macromolecule, via charges DNA behavoirs are differentiated In this study analysis of signal is setting out by EWB PC simulation program and oscilloscope devices.展开更多
Effective removal of emerging contaminants(ECs)to minimize their impacts on human health and the natural environment is a global priority.For the removal of ECs in water,we fabricated a seaweed spherical microsphere c...Effective removal of emerging contaminants(ECs)to minimize their impacts on human health and the natural environment is a global priority.For the removal of ECs in water,we fabricated a seaweed spherical microsphere catalyst with Cu cation-πstructures by in situ doping of Cu species and ascorbic acid in mesoporous silica(Cu-C-MSNs)via a hydrothermal method.The results indicate that bisphenol A(BPA)is substantially degraded within 5 min under natural conditions,with its biological toxicity considerably weakened.Moreover,industrial wastewater could also be effectively purified by Cu-C-MSNs/H_(2)O_(2) system.The presence of metal sites and the complexation of ECs via cation-πinteraction andπ-πstacking on the catalyst surface were directly responsible for the polarization distribution of electrons,thus activating H_(2)O_(2) and dissolved oxygen(DO).The removal of contaminants could be attributed primarily to 1)the activation of H_(2)O_(2) into ^(·)OH to attack the contaminants and 2)self-cleavage because of the transfer of electrons from the contaminants to the catalysts.This study provides an innovative solution for the effective treatment of ECs and has positive implications for easing global environmental crises.展开更多
Differential capacitance is derived based upon energy,charge or current considerations,and determined when it may go negative or positive.These alternative views of differential capacitances are analyzed,and the relat...Differential capacitance is derived based upon energy,charge or current considerations,and determined when it may go negative or positive.These alternative views of differential capacitances are analyzed,and the relationships between them are shown.Because of recent interest in obtaining negative capacitance for reducing the subthreshold voltage swing in field effect type of devices,using ferroelectric materials characterized by permittivity,these concepts are now of paramount interest to the research community.For completeness,differential capacitance is related to the static capacitance,and conditions when the differential capacitance may go negative in relation to the static capacitance are shown.展开更多
CoCr_(2)O_(4)nanoceramics are prepared by sol-gel auto combustion method.Synchrotron X-ray diffraction analysis affirms the singlephasepristine cubic structure with space group Fd3m.Debye-Scherrer method estimates the...CoCr_(2)O_(4)nanoceramics are prepared by sol-gel auto combustion method.Synchrotron X-ray diffraction analysis affirms the singlephasepristine cubic structure with space group Fd3m.Debye-Scherrer method estimates the crystallite size of main intense peak tobe~27:15 nm.Prominent bands obtained in infrared spectra at 448 and 599 cm^(-1)are due to metal-oxygen stretching bond presentat tetrahedral and octahedral sites.Dielectric parameters decrease as frequency increases from 103 to 106 Hz that can be interpretedby Maxwell-Wagner-type interfacial polarization.Complex impedance spectra(Nyquist plot)reveal arc like behavior,which ismainly due to intergrain(grain boundary)resistance that also exhibits conducting nature of the nanoceramics.Weak ferroelectricityis mainly associated with the partial reversal of the polarization.Leakage current behavior follows the Ohmic and Child square law.Electron conduction process was interpreted by space-charge limited current(SCLC)mechanism.Leakage current behaviorobserved in cobalt chromite nanoceramics is mainly attributed to the oxygen vacancies.展开更多
The velocity dispersion and attenuation of shear horizontal(SH) waves in a layered piezoelectric structure loaded with viscous liquid is studied,where the(1- x)Pb(Mg(1/3)Nb(2/3))O(3-x)PbTiO3[PMN-xPT]single...The velocity dispersion and attenuation of shear horizontal(SH) waves in a layered piezoelectric structure loaded with viscous liquid is studied,where the(1- x)Pb(Mg(1/3)Nb(2/3))O(3-x)PbTiO3[PMN-xPT]single crystal is chosen as the piezoelectric layer.The PMN-xPT is being polarized along[011]c and[001]c so that the macroscopic symmetries are mm 2 and 4 mm,respectively.For the nonconductive liquid,the electrically open and shorted conditions at the interface between the liquid and the piezoelectric layer are considered.The phase velocity equations are derived analytically.The effects of the electrically boundary condition,the viscous coefficient and mass density of liquid as well as the thickness of the PMN-xPT layer on the phase velocity and attenuation are graphically illustrated.The results show that the phase velocity for the[011]c polarized PMN-0.29 PT is much smaller than that for the[001]c polarized PMN-0.33 PT,and the effects of viscous coefficient and piezoelectric layer thickness on the phase velocity for the[011]c case are stronger than that for the[001]c case.In addition,the electrical boundary conditions have an obvious influence on the propagation behaviors.These results can be useful for the designs and applications of acoustic wave devices and liquid biosensors.展开更多
The electrocaloric effect(ECE) of multilayer ceramic capacitor(MLCC) of Y5 V type was directly measured via a differential scanning calorimetry(DSC) method and a reference resistor was used to calibrate the heat flow ...The electrocaloric effect(ECE) of multilayer ceramic capacitor(MLCC) of Y5 V type was directly measured via a differential scanning calorimetry(DSC) method and a reference resistor was used to calibrate the heat flow due to the heat dissipation. The results are compared with those calculated from Maxwell relations by using the polarization data obtained from the polarization–electric field hysteresis loops. The direct method shows a larger ECE temperature change, which is accounted for the situation approaches an ideal condition. For the indirect method using Maxwell relations, only the polarization projection along the electric field was taken into account, which will be less than the randomly distributed real polarizations that contribute to the ECE. The MLCCs exhibit a broad peak of ECE around 80 C, which will be favorite for the practical ECE cooling devices.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10604014 and 10874025the Shanghai Education Committee and the Shanghai Education Development Foundation ("Shu Guang" Project under Grant No. 05SG01)+1 种基金the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, ChinaChinese National Key Basic Research Special Fund under Grant No. 2006CB921706
文摘By using a first-principles approach, we investigate the pathway of electric displacement fields in shaped graded dielectric materials existing in the form of cloaks with various shapes. We reveal a type of apparently negative electric polarization (ANEP), which is due to a symmetric oscillation of the paired electric permittivities, satisfying a sum rule. The ANEP does not occur for a spherical cloak, but appears up to maximum as a/b (the ratio between the long and short principal axis of the spheroidal cloak) is about 5/2, and eventually disappears as a/b becomes large enough corresponding to a rod-like shape. Further, the cloaking efficiency is calculated for different geometrical shapes and demonstrated to closely relate to the ANEP. The possibility of experiments is discussed. This work has relevance to dielectric shielding based on shaped graded dielectric materials.
基金supported by the National Natural Science Foundation of China(Grant Nos.12047564,and 51725104)the support by the National Natural Science Foundation of China(Grant No.12227806)+4 种基金the support by the National Natural Science Foundation of China(Grant Nos.11974036,and 11834014)the Fundamental Research Funds for the Central Universities(Grant No.2024CDJXY022)the Chinesisch-Deutsche Mobilit?tsprogamm of Chinesisch-Deutsche Zentrum für Wissenschaftsf?rderung(Grant No.M-0496)the Open Fund of the China Spallation Neutron Source Songshan Lake Science City(Grant No.DG2431351H)funded by the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)(Grant No.277146847-CRC 1238)。
文摘The spin-orbit assisted Mott insulator α-RuCl_(3) is a prime candidate for material realization of the Kitaev quantum spin liquid.While little attention has been paid to charge degrees of freedom,charge effects,such as electric polarization,may arise in this system.Here,we report distortion-induced local electric polarization in α-RuCl_(3) as evidenced by single-crystal X-ray diffraction,second harmonic generation(SHG)and dielectric measurements.The SHG signal appears at room temperature and develops substantially in the Kitaev paramagnetic state when short-range spin correlations come into play.Despite sizable pyroelectric currents in the Kitaev paramagnetic state,the absence of hysteresis in the polarization-electric field(P-E)points to the shortrange nature of electric polarization.This localized electric polarization is likely the result of distortion-induced charge dimerization,achieved through virtual hopping-induced charge redistribution.In addition,the electric polarization is boosted by short-range spin correlations via spin-phonon coupling in the Kitaev paramagnetic state.Our results emphasize the importance of charge degrees of freedom in α-RuCl_(3),which establish a novel platform to investigate charge effects in Kitaev materials.
基金support by the National Natural Science Foundation of China(Grant No.12274477)the Department of Science and Technology of Guangdong Province in China(Grant No.2019QN01X061)+1 种基金support by the Research Grant Council of Hong Kong SAR(Grant Nos.AoE/P-701/20,and HKU SRFS2122-7S05)the Guangdong-Hong Kong Joint Laboratory of Quantum Matter。
文摘In binary compound 2D insulators/semiconductors such as hexagonal boron nitride(h BN), the different electron affinities of atoms can give rise to out-of-plane electric polarizations across inversion asymmetric van der Waals interface of near 0° interlayer twisting. Here we show that at a general stacking order where sliding breaks 2π/3-rotational symmetry, the interfacial charge redistribution also leads to an in-plane electric polarization, with a magnitude comparable to that of the out-of-plane ones.The effect is demonstrated in h BN bilayers, as well as in biased graphene bilayers with gate-controlled interlayer charge redistributions. In long wavelength moiré patterns, the in-plane electric polarizations determined by the local interlayer stacking registries constitute topologically nontrivial spatial textures. We show that these textures can be used to distinguish moirépatterns of different origins from twisting, biaxial-and uniaxial-heterostrain, where vector fields of electric polarizations feature Bloch-type merons, Néel-type merons, and anti-merons, respectively. Combinations of twisting and heterostrain can further be exploited for engineering various electric polarization textures including 1D quasiperiodic lattices.
基金supported by the National Key Research and Development Program of China(No.2021YFA 1200800)the Start‐up Funds of Wuhan Universitysupported by the National Research Foundation,Singapore,under its Competitive Research Programmer(No.NRF‐CRP22‐2019‐0007).
文摘Two‐dimensional(2D)ferroelectrics have attracted considerable attention due to their potential in the development of devices of miniaturization and multifunction.Although several van der Waals(vdW)‐layered materials show ferroelectricity,the experimental demonstrations of ferroelectric behavior in monolayers are very limited.Here we report the observation of room‐temperature out‐of‐plane switchable electric polarization in supported MoS_(2) monolayers exfoliated from 3R‐stacked bulk crystals under ambient conditions.Using in situ piezoelectric force microscopy and Kelvin probe force microscopy in a glovebox,we reveal that trapped water/ice molecules are responsible for this switchable electric polarization and this conclusion is strongly supported by theoretical simulations.It is worth noting that the water/ice trapping in the monolayers exfoliated from 2H‐stacked MoS_(2) crystals is not as much as that in 3R monolayers and,consequently,the out‐of‐plane electric polarization is missing there.Our findings indicate that monolayers with a trapped single layer of polar molecules might be emerging alternatives to 2D ferroelectrics.Furthermore,the stacking sequences may bring new properties and applications to 2D vdW materials not only when we stack them up but also when we thin them down.
基金the financial support from National Science Foundation of China(51872039,52021001,5197204)。
文摘Since the beginning of research on two-dimensional(2D)materials,a few numbers of 2D ferroelectric materials have been predicted or experimentally confirmed,but 2D ferroelectrics as necessary functional materials are greatly important in developing future electronic devices.Recent breakthroughs in 2D ferroelectric materials are impressive,and the physical and structural properties of twisted 2D ferroelectrics,a new type of ferroelectric structure by rotating alternating monolayers to form an angle with each other,have attracted widespread interest and discussion.Here,we review the latest research on twisted 2D ferroelectrics,including Bernal-stacked bilayer graphene/BN,bilayer boron nitride,and transition metal dichalcogenides.Finally,we prospect the development of twisted 2D ferroelectrics and discuss the challenges and future of 2D ferroelectric materials.
基金Projected supported by the National Natural Science Foundation of China(Grant No.11174182)the Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20110131110005)
文摘By making use of the quasi-two-dimensional (quasi-2D) model, the current-voltage (l-V) characteristics of In0AsA10.82N/A1N/GaN heterostructure field-effect transistors (HFETs) with different gate lengths are simulated based on the measured capacitance-voltage (C-V) characteristics and I-V characteristics. By analyzing the variation of the electron mobility for the two-dimensional electron gas (2DEG) with electric field, it is found that the different polarization charge distributions generated by the different channel electric field distributions can result in different polarization Coulomb field scatterings. The difference between the electron mobilities primarily caused by the polarization Coulomb field scatterings can reach up to 1522.9 cm2/V.s for the prepared In0.38AI0.82N/A1N/GaN HFETs. In addition, when the 2DEG sheet density is modulated by the drain-source bias, the electron mobility presents a peak with the variation of the 2DEG sheet density, the gate length is smaller, and the 2DEG sheet density corresponding to the peak point is higher.
基金the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20210198)the National Natural Science Foundation of China(Grant No.12204095)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.2242022R10197)the National Natural Science Foundation of China(Grant No.11834002).
文摘We study the ferroelectricity in a one-dimensional(1D)system composed of a double helix SnIP with absorbing water molecules.Our ab initio calculations reveal two factors that are critical to the electrical polarization.The first one is the orientation of polarized water molecules staying in the R2 region of SnIP.The second one is the displacement of I atom which roots from subtle interaction with absorbed water molecules.A reasonable scenario of polarization flipping is proposed in this study.In the scenario,the water molecule is rolling-up with keeping the magnitude of its electrical dipole and changing its direction,meanwhile,the displacement of I atoms is also reversed.Highly tunable polarization can be achieved by applying strain,with 26.5%of polarization enhancement by applying tensile strain,with only 4%degradation is observed with 4%compressive strain.Finally,the direct band gap is also found to be correlated with strain.
基金Supported by Key Project of Chinese National Programs for Fundamental Research Development(973 Project 2005CB221502)
文摘In the light of fractal geometry theory, the characteristics of coal's electric parameters (including dielectric constant, alternating conductivity, dielectric loss angle tangent and electric polarization constant) were studied by using literature data. The results are shown that the electrical properties of coal have fractal characteristic. The fractal dimensions of dielectric, alternating conductivity, dielectric loss angle tangent were obtained, and are relative to the content of pyrite sulfur, heat and ash content of coal.
基金Supported by the National Basic Research Program of China under Grant No 2012CB933501the National Natural Science Foundation of China under Grant Nos 61177051,11304389,61404174 and 61205087
文摘We theoretically and numerically demonstrate that a transmission-type electrically tunable polarizer can be realized by using graphene ribbons supported on a dielectric film with a graphene sheet behind. The polarization mechanism originates from the antenna plasmon resonance of graphene stripes. The results of full-wave numerical simulations reveal that transmittance of 0.70 for one polarization and 0.0073 for another polarization can be obtained at normal incidence. The transmission-type electrically tunable polarizer provides and facilitates a variety of applications, including filtering, detecting, and imaging.
基金Project supported by the Key Research and Development Program of Guangdong Province,China(Grant No.2020B010174003)。
文摘The strong polarization effect of GaN-based materials is widely used in high-performance devices such as white-lightemitting diodes(white LEDs),high electron mobility transistors(HEMTs),and GaN polarization superjunctions.However,the current researches on the polarization mechanism of GaN-based materials are not sufficient.In this paper,we studied the influence of polarization on electric field and energy band characteristics of Ga-face GaN bulk materials by using a combination of theoretical analysis and semiconductor technology computer-aided design(TCAD) simulation.The selfscreening effect in Ga-face bulk GaN under ideal and non-ideal conditions is studied respectively.We believe that the formation of high-density two-dimensional electron gas(2 DEG) in GaN is the accumulation of screening charges.We also clarify the source and accumulation of the screening charges caused by the GaN self-screening effect in this paper and aim to guide the design and optimization of high-performance GaN-based devices.
基金supported by the National Natural Science Foundation of China (Grant No 10874049)the State Key Program for Basic Research of China (Grant No 2007CB925204)the Natural Science Foundation of Guangdong Province of China (Grant No 07005834)
文摘A theoretical investigation is presented on the characteristics of the kinetic magnetoelectric effect in laterally boundary-confined ballistic two-dimensional hole gases. It was shown that, though the momentum-dependent effective magnetic fields felt by charge carriers due to the spin-orbit interaction are in-plane orientated in such systems, both in-plane polarized and normal polarized nonequilibrium spin polarization densities could be electrically induced by the kinetic magnetoelectric effect, and the induced nonequilibrium spin polarizations exhibit some interesting characteristics. The characteristics we found indicate that there may be some possible relation between this effect and some recent experimental findings.
基金Project supported by the Science Foundation of North University of China(Grant No.2017026)the Applied Basic Research Foundation of Shanxi Province,China(Grant No.201801D221143)+1 种基金the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi,China(Grant No.2019L0535)the National Natural Science Foundation of China(Grant No.11847012).
文摘By dispersing La1-xSrxMnO3 (LSMO) granule into PbZrxTi1-xO3 (PZT) matrix, the 0-3 type LSMO/PZT composite film is synthesized through chemical solution method. The asymmetry of the top and bottom electrodes introduces novel electrostatic screening on LSMO/PZT interface. As electric polarization is switched between upward and downward orientations, the evolution of exchange bias, diode transport, and magnetoresistance is observed. The result implies the electrostatic switch of magnetic core-shell in the present film. In detail, as the spontaneous polarization is upward or downward in the PZT matrix, the ferromagnetic/antiferromagnetic or ferromagnetic/ferromagnetic core-shell structure is formed in LSMO granule, respectively. This work would develop a novel device for spintronics and metamaterial.
基金supported by the National Key Research and Development Program of China(2021YFB3800800,2021YFC2400400)the National Natural Science Foundation of China(Nos.82022016,81991505,51973004,52103312)+1 种基金the Beijing Municipal Natural Science Foundation(7222226)Peking University Medicine Fund(PKU2020LCXQ009).
文摘Stem cells from human exfoliated deciduous teeth(SHED)uniquely exhibit high proliferative and neurogenic potential.Charged biomaterials have been demonstrated to promote neural differentiation of stem cells,but the dose-response effect of electrical stimuli from these materials on neural differentiation of SHED remains to be elucidated.Here,by utilizing different annealing temperatures prior to corona poling treatment,BaTiO_(3)/P(VDF-TrFE)ferroelectric nanocomposite membranes with varying charge polarization intensity(d_(33)≈0,4,12 and 19 pC N^(-1))were fabricated.Enhanced expression of neural markers,increased cell elongation and more prominent neurite outgrowths were observed with increasing surface charge of the nanocomposite membrane indicating a dose-response effect of surface electrical charge on SHED neural differentiation.Further investigations of the underlying molecular mechanisms revealed that intracellular calcium influx,focal adhesion formation,FAK-ERK mechanosensing pathway and neurogenic-related ErbB signaling pathway were implicated in the enhancement of SHED neural differentiation by surface electrical charge.Hence,this study confirms the dose-response effect of biomaterial surface charge on SHED neural differentiation and provides preliminary insights into the molecular mechanisms and signaling pathways involved.
基金supported by the National Natural Science Foundation of China (No. 41574146, 41774162, 42074187)the National Key R&D Program of China (No. 2018YFC1503506)+1 种基金the Excellent Youth Foundation of Hubei Provincial Natural Science Foundation (No. 2019CFA054)the Foundation of the National Key Laboratory of Electromagnetic Environment (No. 20200101)。
文摘This paper briefly reviews ionospheric irregularities that occur in the E and F regions at mid-latitudes. Sporadic E(ES) is a common ionospheric irregularity phenomenon that is first noticed in the E layer. ES mainly appears during daytime in summer hemispheres, and is formed primarily from neutral wind shear in the mesosphere and lower thermosphere(MLT) region. Field-aligned irregularity(FAI) in the E region is also observed by Very High Frequency(VHF) radar in mid-latitude regions. FAI frequently occurs after sunset in summer hemispheres, and spectrum features of E region FAI echoes suggest that type-2 irregularity is dominant in the nighttime ionosphere. A close relationship between ES and E region FAI implies that ES may be a possible source of E region FAI in the nighttime ionosphere. Strong neutral wind shear, steep ES plasma density gradient, and a polarized electric field are the significant factors affecting the formation of E region FAI. At mid-latitudes, joint observational experiments including ionosonde, VHF radar, Global Positioning System(GPS) stations, and all-sky optical images have revealed strong connections across different scales of ionospheric irregularities in the nighttime F region, such as spread F(SF), medium-scale traveling ionospheric disturbances(MSTID), and F region FAI.Observations suggest that different scales of ionospheric irregularities are generally attributed to the Perkins instability and subsequently excited gradient drift instability. Nighttime MSTID can further evolve into small-scale structures through a nonlinear cascade process when a steep plasma density gradient exists at the bottom of the F region. In addition, the effect of ionospheric electrodynamic coupling processes, including ionospheric E-F coupling and inter-hemispheric coupling on the generation of ionospheric irregularities, becomes more prominent due to the significant dip angle and equipotentiality of magnetic field lines in the mid-latitude ionosphere. Polarized electric fields can map to different ionospheric regions and excite plasma instabilities which form ionospheric irregularities. Nevertheless,the mapping efficiency of a polarized electric field depends on the ionospheric background and spatial scale of the field.
文摘In this article there is an aim to build a realistic electronic model of this amazing molecule, this perhaps will be the basis for constructing of molecular computers. DNA molecule making the complexes with histones and other proteines, their electrostatic interaction cause the electrical polarisation and charges formation on this macromolecule, via charges DNA behavoirs are differentiated In this study analysis of signal is setting out by EWB PC simulation program and oscilloscope devices.
基金the National Natural Science Foundation of China(Nos.52122009,52070046,and 51838005)the Introduced Innovative R&D Team Project under the“Pearl River Talent Recruitment Program”of Guangdong Province(China)(No.2019ZT08L387)the Basic and Applied Basic Research Project of Guangzhou(China)(No.202201020163).
文摘Effective removal of emerging contaminants(ECs)to minimize their impacts on human health and the natural environment is a global priority.For the removal of ECs in water,we fabricated a seaweed spherical microsphere catalyst with Cu cation-πstructures by in situ doping of Cu species and ascorbic acid in mesoporous silica(Cu-C-MSNs)via a hydrothermal method.The results indicate that bisphenol A(BPA)is substantially degraded within 5 min under natural conditions,with its biological toxicity considerably weakened.Moreover,industrial wastewater could also be effectively purified by Cu-C-MSNs/H_(2)O_(2) system.The presence of metal sites and the complexation of ECs via cation-πinteraction andπ-πstacking on the catalyst surface were directly responsible for the polarization distribution of electrons,thus activating H_(2)O_(2) and dissolved oxygen(DO).The removal of contaminants could be attributed primarily to 1)the activation of H_(2)O_(2) into ^(·)OH to attack the contaminants and 2)self-cleavage because of the transfer of electrons from the contaminants to the catalysts.This study provides an innovative solution for the effective treatment of ECs and has positive implications for easing global environmental crises.
文摘Differential capacitance is derived based upon energy,charge or current considerations,and determined when it may go negative or positive.These alternative views of differential capacitances are analyzed,and the relationships between them are shown.Because of recent interest in obtaining negative capacitance for reducing the subthreshold voltage swing in field effect type of devices,using ferroelectric materials characterized by permittivity,these concepts are now of paramount interest to the research community.For completeness,differential capacitance is related to the static capacitance,and conditions when the differential capacitance may go negative in relation to the static capacitance are shown.
基金UGC-DAE CSR,as an institute,is acknowledged for extending its facilities and financial assistance(Grant No.:CSRIC/BL-22/CRS-119-2014/269).
文摘CoCr_(2)O_(4)nanoceramics are prepared by sol-gel auto combustion method.Synchrotron X-ray diffraction analysis affirms the singlephasepristine cubic structure with space group Fd3m.Debye-Scherrer method estimates the crystallite size of main intense peak tobe~27:15 nm.Prominent bands obtained in infrared spectra at 448 and 599 cm^(-1)are due to metal-oxygen stretching bond presentat tetrahedral and octahedral sites.Dielectric parameters decrease as frequency increases from 103 to 106 Hz that can be interpretedby Maxwell-Wagner-type interfacial polarization.Complex impedance spectra(Nyquist plot)reveal arc like behavior,which ismainly due to intergrain(grain boundary)resistance that also exhibits conducting nature of the nanoceramics.Weak ferroelectricityis mainly associated with the partial reversal of the polarization.Leakage current behavior follows the Ohmic and Child square law.Electron conduction process was interpreted by space-charge limited current(SCLC)mechanism.Leakage current behaviorobserved in cobalt chromite nanoceramics is mainly attributed to the oxygen vacancies.
基金supported by the National Natural Science Foundation of China(No.11272221)the National Key Basic Research Program of China(No.2012CB723300)the support from the Natural Science Foundation of Hebei Province of China(No.A2013210106)
文摘The velocity dispersion and attenuation of shear horizontal(SH) waves in a layered piezoelectric structure loaded with viscous liquid is studied,where the(1- x)Pb(Mg(1/3)Nb(2/3))O(3-x)PbTiO3[PMN-xPT]single crystal is chosen as the piezoelectric layer.The PMN-xPT is being polarized along[011]c and[001]c so that the macroscopic symmetries are mm 2 and 4 mm,respectively.For the nonconductive liquid,the electrically open and shorted conditions at the interface between the liquid and the piezoelectric layer are considered.The phase velocity equations are derived analytically.The effects of the electrically boundary condition,the viscous coefficient and mass density of liquid as well as the thickness of the PMN-xPT layer on the phase velocity and attenuation are graphically illustrated.The results show that the phase velocity for the[011]c polarized PMN-0.29 PT is much smaller than that for the[001]c polarized PMN-0.33 PT,and the effects of viscous coefficient and piezoelectric layer thickness on the phase velocity for the[011]c case are stronger than that for the[001]c case.In addition,the electrical boundary conditions have an obvious influence on the propagation behaviors.These results can be useful for the designs and applications of acoustic wave devices and liquid biosensors.
基金supported by the National Natural Science Foundation of China(Grant No.51372042)the Department of Education of Guangdong Province of People’s Republic of China(Grant No.2014GKXM039)+1 种基金Guangdong Provincial Natural Science Foundation(Grant No.2015A030308004)the NSFC-Guangdong Joint Fund(Grant NoU1501246)
文摘The electrocaloric effect(ECE) of multilayer ceramic capacitor(MLCC) of Y5 V type was directly measured via a differential scanning calorimetry(DSC) method and a reference resistor was used to calibrate the heat flow due to the heat dissipation. The results are compared with those calculated from Maxwell relations by using the polarization data obtained from the polarization–electric field hysteresis loops. The direct method shows a larger ECE temperature change, which is accounted for the situation approaches an ideal condition. For the indirect method using Maxwell relations, only the polarization projection along the electric field was taken into account, which will be less than the randomly distributed real polarizations that contribute to the ECE. The MLCCs exhibit a broad peak of ECE around 80 C, which will be favorite for the practical ECE cooling devices.