In order to clarify the fatigue damage evolution of concrete exposed to flexural fatigue loads,ultrasonic pulse velocity(UPV),impact-echo technology and surface electrical resistance(SR) method were used.Damage variab...In order to clarify the fatigue damage evolution of concrete exposed to flexural fatigue loads,ultrasonic pulse velocity(UPV),impact-echo technology and surface electrical resistance(SR) method were used.Damage variable based on the change of velocity of ultrasonic pulse(Du) and impact elastic wave(Di)were defined according to the classical damage theory.The influences of stress level,loading frequency and concrete strength on damage variable were measured.The experimental results show that Du and Di both present a three-stages trend for concrete exposed to fatigue loads.Since impact elastic wave is more sensitive to the microstructure damage in stage Ⅲ,the critical damage variable,i e,the damage variable before the final fracture of concrete of Di is slightly higher than that of Du.Meanwhile,the evolution of SR of concrete exposed to fatigue loads were analyzed and the relationship between SR and Du,SR and Di of concrete exposed to fatigue loads were established.It is found that the SR of concrete was decreased with the increasing fatigue cycles,indicating that surface electrical resistance method can also be applied to describe the damage of ballastless track concrete exposed to fatigue loads.展开更多
BACKGROUND Mesenchymal stem cells(MSCs)modulated by various exogenous signals have been applied extensively in regenerative medicine research.Notably,nanosecond pulsed electric fields(nsPEFs),characterized by short du...BACKGROUND Mesenchymal stem cells(MSCs)modulated by various exogenous signals have been applied extensively in regenerative medicine research.Notably,nanosecond pulsed electric fields(nsPEFs),characterized by short duration and high strength,significantly influence cell phenotypes and regulate MSCs differentiation via multiple pathways.Consequently,we used transcriptomics to study changes in messenger RNA(mRNA),long noncoding RNA(lncRNA),microRNA(miRNA),and circular RNA expression during nsPEFs application.AIM To explore gene expression profiles and potential transcriptional regulatory mechanisms in MSCs pretreated with nsPEFs.METHODS The impact of nsPEFs on the MSCs transcriptome was investigated through whole transcriptome sequencing.MSCs were pretreated with 5-pulse nsPEFs(100 ns at 10 kV/cm,1 Hz),followed by total RNA isolation.Each transcript was normalized by fragments per kilobase per million.Fold change and difference significance were applied to screen the differentially expressed genes(DEGs).Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed to elucidate gene functions,complemented by quantitative polymerase chain reaction verification.RESULTS In total,263 DEGs were discovered,with 92 upregulated and 171 downregulated.DEGs were predominantly enriched in epithelial cell proliferation,osteoblast differentiation,mesenchymal cell differentiation,nuclear division,and wound healing.Regarding cellular components,DEGs are primarily involved in condensed chromosome,chromosomal region,actin cytoskeleton,and kinetochore.From aspect of molecular functions,DEGs are mainly involved in glycosaminoglycan binding,integrin binding,nuclear steroid receptor activity,cytoskeletal motor activity,and steroid binding.Quantitative real-time polymerase chain reaction confirmed targeted transcript regulation.CONCLUSION Our systematic investigation of the wide-ranging transcriptional pattern modulated by nsPEFs revealed the differential expression of 263 mRNAs,2 miRNAs,and 65 lncRNAs.Our study demonstrates that nsPEFs may affect stem cells through several signaling pathways,which are involved in vesicular transport,calcium ion transport,cytoskeleton,and cell differentiation.展开更多
The Gibbs free energy is strongly related to the stability and catalytic function of an enzyme through the energetic changes that occur in the chemical reactions the enzyme catalyzes. In this in silico study, a pulsed...The Gibbs free energy is strongly related to the stability and catalytic function of an enzyme through the energetic changes that occur in the chemical reactions the enzyme catalyzes. In this in silico study, a pulsed electric field was applied to an azoreductase, and its effect on the Gibbs free energy of molecular docking with two dyes was measured. We propose that certain stimuli from a pulsed electric field favor the structural stability of the enzyme by promoting an arrangement in the active site, potentially leading to an enhancement of enzymatic activity overall.展开更多
Background:The polyphenols extraction of Phyllanthus emblica is primarily carried out using organic solvents,and assisted by physical fields such as ultrasound and microwave for extraction.High voltage pulsed electric...Background:The polyphenols extraction of Phyllanthus emblica is primarily carried out using organic solvents,and assisted by physical fields such as ultrasound and microwave for extraction.High voltage pulsed electric field technology(PEF)is a non-thermal processing technology that has high efficiency and minimal damage to thermosensitive substances.PEF has been applied to plant extraction in many studies,however,the extraction of polyphenols from Phyllanthus emblica using the PEF has still not been reported;Objective:This study explores the optimal extraction process of polyphenols from Phyllanthus emblica using the PEF,and investigates its relaxation and anti-wrinkle based on anti-oxidation and anti-inflammatory experiment,in order to develop a Phyllanthus emblica extract with substantial efficacy;Materials and Methods:The method of Phyllanthus emblica extract using PEF is established,and compared with a traditional extraction method.The experimental conditions,such as electric field intensity(0.5–6.0 kV/cm),pulse times(20−120),extraction time(0–60 min)and material concentration(0.5%∼3%),are investigated and optimized using orthogonal experiments;Results:the polyphenols in the Phyllanthus emblica extract were highest at the electric field intensity of 5 kV/cm,120 pulses,extraction time of 30 min,and 2%material concentration.The PEFcontained more polyphenols than the conventional water extraction and ultrasound-assisted extraction.The Phyllanthus emblica extract had substantial antioxidant and anti-inflammatory effects,with a good clearance effect on DPPH(IC50 of 1.82%)and ABTS(IC50 of 1.80%)radicals.At the Phyllanthus emblica extract concentration of 1.25%,inflammatory factors(TNF-α)were reduced by 47.08%;and Conclusion:The PEF is a leading-edge and promising method for preparing Phyllanthus emblica extracts.展开更多
The characteristics of high pressure sulphur hexafluoride(SF6) discharges in a highly non-uniform electric field under repetitive nanosecond pulses are investigated in this paper.The influencing factors on discharge...The characteristics of high pressure sulphur hexafluoride(SF6) discharges in a highly non-uniform electric field under repetitive nanosecond pulses are investigated in this paper.The influencing factors on discharge process,such as gas pressure,pulse repetition frequency(PRF),and number of applied pulses,are analyzed.Experimental results show that the corona intensity weakens with the increase of gas pressure and strengthens with the increase of PRF or number of applied pulses.Spark discharge images suggest that a shorter and thicker discharge plasma channel will lead to a larger discharge current.The number of applied pulses to breakdown descends with the increase of PRF and ascends with the rise of gas pressure.The reduced electric field(E/p) decreases with the increase of PRF in all circumstances.The experimental results provide significant supplements to the dielectric characteristics of strongly electronegative gases under repetitive nanosecond pulses.展开更多
Atmospheric dielectric barrier discharges driven by repetitive unipolar narrow pulse excitation are investigated numerically by using one-dimensional fluid models.The one-dimensional simulation focuses on the effects ...Atmospheric dielectric barrier discharges driven by repetitive unipolar narrow pulse excitation are investigated numerically by using one-dimensional fluid models.The one-dimensional simulation focuses on the effects of applied voltage amplitude,pulse repetition frequency,gap width andγcoefficient on the multiple-current-pulse(MCP)discharge.The results indicate that the MCP behavior will lead to the stratification of electron density distribution in axial direction.Traditional MCP manipulating methods,such as reducing the applied voltage amplitude,increasing the applied voltage frequency,adjusting the gap width,cannot regulate MCPs exhibiting in this work.Further analyses reveal that the increasing electric field of the cathode fall region is the basis for the emergence of MCP behavior.展开更多
The application of electric current pulse(ECP) to a solidification process refers to the immersion of electrodes into the liquid metal and the employment of thermal insulators on the upper surface of metal.In order ...The application of electric current pulse(ECP) to a solidification process refers to the immersion of electrodes into the liquid metal and the employment of thermal insulators on the upper surface of metal.In order to ascertain the effects of these two factors on the structure refinement by the ECP technique,three groups of experiments were performed with different types of electrodes or various thermal insulators.By the comparison between solidification structures under different conditions,it is followed that the electrode and the thermal insulator have an obvious influence on the grain refinement under an applied ECP,and further analysis demonstrates that the thermal conditions of the liquid surface play a vital role in the modification of solidification structure.Also,the results support the viewpoint that most of the equiaxed grains originate from the liquid surface subjected to an ECP.展开更多
A mathematical model considering free nuclei was developed to reveal the migration behavior of the free nuclei. Numerical simulation results show that most of the nuclei on the top surface of the melt move downwards a...A mathematical model considering free nuclei was developed to reveal the migration behavior of the free nuclei. Numerical simulation results show that most of the nuclei on the top surface of the melt move downwards and distribute randomly inside the Al melt, which induces more nucleation sites resulting in grain refinement. At the same time, the effect of nuclei size on the nuclei distribution and refinement employing electric current pulse (ECP) was also investigated. The smaller nuclei migrate a short distance with the Al melt at lower speed. But for the larger nuclei, the migration downwards with higher speed benefits the refinement of interior grains of the melt. The research results help to better understand the refinement process and provide a more reasonable explanation of the grain refinement mechanism using ECP.展开更多
The electric pulse modification (EP, EPM) of liquid metal is a novel method for grain refinement. The structure of EP-modified Al-5%Cu melt was characterized by high-temperature X-ray diffractometry. The results sho...The electric pulse modification (EP, EPM) of liquid metal is a novel method for grain refinement. The structure of EP-modified Al-5%Cu melt was characterized by high-temperature X-ray diffractometry. The results show that the Cu-containing Al clusters remarkably increase in the EP-modified melt, furthermore, these clusters in that case tend to contract due to the decrease of relevant atomic radius and the co-ordination number. This kind of liquid-phase structure leads to a more homogeneous Cu-rich phase distribution in the final solidification structure. Differential scanning calorimetry (DSC) tests indicate that the solidification super-cooling degree of the EP-modified liquid phase is 2.36 times that of the unmodified. These facts suggest that the atom cluster changes in EP-modified Al-5%Cu melt would disagree with that by EPM model previously proposed in liquid pure metal.展开更多
In order to improve the charging efficiency of lead acid battery, shorten the charging time and avoid the battery polarization, a new charging method was put forward. Based on the analyzed results of charging charact...In order to improve the charging efficiency of lead acid battery, shorten the charging time and avoid the battery polarization, a new charging method was put forward. Based on the analyzed results of charging characteristic of lead acid battery, a pulse quick charger is designed to adjust the charging current pulse’s amplitude and pulse width automatically stage by stage according to the measured battery voltage and feedback current. Compared with other kinds of quick chargers, it has such characteristics as shorter charging time, higher charging efficiency and lower temperature increasing during the charging process. As a result, the battery polarization is reduced efficiently.展开更多
Objective: To evaluate the effect of transcutaneous electric pulse stimulation (TEPS) on hepatic blood flow and parenchymal microcirculation in patients with fatty liver. Methods: A total of 31 fatty liver volunteer p...Objective: To evaluate the effect of transcutaneous electric pulse stimulation (TEPS) on hepatic blood flow and parenchymal microcirculation in patients with fatty liver. Methods: A total of 31 fatty liver volunteer patients were observed in this study. Changes of color Doppler energy (CDE) images before and after TEPS of local points nearby the liver were recorded by using color Doppler ultrasound diagnostic apparatus (ACUSON 128XP/10C). Sum of color pixel area (SCPA), average of color value (ACV) and SCPA×ACV (integral) of the hepatic flow images were analyzed by an image processing system, single blind method and paired t-test. Programmed TEPS (0.5- 150 Hz / 2 000 Hz , 10- 25 V ) was applied to the right Qimen (期门 LR 14)-Jingmen (京门 GB 25), Fuai (腹哀 SP 16)-Ganshu (肝俞 BL 18) respectively for 15 min. Results: Compared with basic values of pretreatment, SCPA, ACV and SCPA×ACV increased significantly (t=2.71, P<0.02; t=3.42, P<0.01; and t=8.15, P<0.001) after TEPS, meaning improvement of hepatic blood flow supply. Conclusion: TEPS of acupoints near the liver can improve hepatic blood flow and hepatic parenchymal microcirculation in patients with fatty liver.展开更多
This study investigated whether the curative effect of short-pulse gastric electrical stimulation (GES) on the vasopressin-induced dyspeptic symptoms was mediated by central opioid peptide-producing neurons. Five fe...This study investigated whether the curative effect of short-pulse gastric electrical stimulation (GES) on the vasopressin-induced dyspeptic symptoms was mediated by central opioid peptide-producing neurons. Five female beagle dogs implanted with 1 pair of electrodes in gastric serosa were used in a two-experiment study. In experiment one, the brain was scanned by positron emission tomography in 3 dogs with and without short-pulse GES, and the radioactivity in nuclei of solitary tract (NST) and hypothalamus was detected. Experiment two was composed of 4 sessions. In session one, the dogs were injected with vasopressin in the absence of short-pulse GES. With session two, the short-pulse GES was simultaneously given via the electrodes with the injection of vasopressin. In sessions three and four, naloxone and naloxone methiodide was administered respectively in the presence of short-pulse GES. Motion sickness-like symptoms were scored and compared among the different sessions. The results showed that the short-pulse GES significantly increased the radioactivity in NST and hypothalamic nuclei (P〈0.05, vs control). The short-pulse GES could ameliorate the vasopressin-induced motion sickness-like symptoms in dogs. Naloxone, but not naloxone methiodide could attenuate the curative effects of short-pulse GES. It is concluded that NST and hypothalamic nuclei may participate in the mediation of the curative effects of short-pulse GES on dyspepsia-like symptoms. Central opioid peptide-containing neurons presumably mediate the therapeutic effect on dyspeptic symptoms of short-pulse GES.展开更多
The heredity of aluminum melt under the action of pulse electric field was investigated by means of the remelt experiment. A new hereditary criterion under this condition was proposed; in the meantime, the differentia...The heredity of aluminum melt under the action of pulse electric field was investigated by means of the remelt experiment. A new hereditary criterion under this condition was proposed; in the meantime, the differential transferability of genetic carrier in activated melt among filial generations was validated with the aid of DSC.展开更多
A new process for removing the pollutants in aqueous solution-activated alumina bed in pulsed high-voltage electric field was investigated for the removal of phenol under different conditions. The experimental results...A new process for removing the pollutants in aqueous solution-activated alumina bed in pulsed high-voltage electric field was investigated for the removal of phenol under different conditions. The experimental results indicated the increase in removal rate with increasing applied voltage, increasing pH value of the solution, aeration, and adding Fe^2+. The removal rate of phenol could reach 72.1% when air aeration flow rate was 1200 ml/min, and 88.2% when 0.05 mmol/L Fe^2+ was added into the solution under the conditions of applied voltage 25 kV, initial phenol concentration of 5 mg/L, and initial pH value 5.5. The addition of sodium carbonate reduced the phenol removal rate. In the pulsed high-voltage electric field, local discharge occurred at the surface of activated alumina, which promoted phenol degradation in the thin water film. At the same time, the space-time distribution of gas-liquid phases was more uniform and the contact areas of the activated species generated from the discharge and the pollutant molecules were much wider due to the effect of the activated alumina bed. The synthetical effects of the pulsed high-voltage electric field and the activated alumina particles accelerated phenol degradation.展开更多
The effect of electric pulse modifying on the solidification structure of an Al-15%Si alloy was investigated. The result shows that the primary silicon disappears sometimes and the eutectic phase is refined after the ...The effect of electric pulse modifying on the solidification structure of an Al-15%Si alloy was investigated. The result shows that the primary silicon disappears sometimes and the eutectic phase is refined after the treatrnent of EP (electric pulse) though there are different modalities in different treating durations. DSC (differential scanning calorimetry) analysis indicates that the super-cooling texture decreases and the freezing range narrows evidently after the electric pulse treatment.展开更多
Heredity of high pure aluminum melts under different pulse electric field was investigated by means of repetitious remelt experiment. The results indicate that the genetic coefficient by measurement of grain size of c...Heredity of high pure aluminum melts under different pulse electric field was investigated by means of repetitious remelt experiment. The results indicate that the genetic coefficient by measurement of grain size of cast structure has a close relation with pulse voltage. Moreover, the hereditary law accords with the function of In = 1+ e^-an+β. The stability of genetic carrier (cluster) comprises in the competition between repetitious cooling and heating impulse and the effect of electric pulse modification.展开更多
The number of liver cancer patients is likely to continue to increase in the coming decades due to the aging of the population and changing risk factors.Traditional treatments cannot meet the needs of all patients.New...The number of liver cancer patients is likely to continue to increase in the coming decades due to the aging of the population and changing risk factors.Traditional treatments cannot meet the needs of all patients.New treatment methods evolved from pulsed electric field ablation are expected to lead to breakthroughs in the treatment of liver cancer.This paper reviews the safety and efficacy of irreversible electroporation in clinical studies,the methods to detect and evaluate its ablation effect,the improvements in equipment and its antitumor effect,and animal and clinical trials on electrochemotherapy.We also summarize studies on the most novel nanosecond pulsed electric field ablation techniques in vitro and in vivo.These research results are certain to promote the progress of pulsed electric field in the treatment of liver cancer.展开更多
Electric pulse modification (EPM) is a novel technique that reduces grain size by altering the structure of a melt. It was investigated that the response of the casting structure of high pure aluminum to EPM in diff...Electric pulse modification (EPM) is a novel technique that reduces grain size by altering the structure of a melt. It was investigated that the response of the casting structure of high pure aluminum to EPM in different superheated melts. The results indicate that the grain refining effect of a given pulse electric field holds an optimal temperature range, moreover, a lower or higher superheated temperature will both disadvantage the improvements of casting structure. It essentially lies in the cooperative action between the distorted absorption of clusters and the activated capability of atoms in the aluminum melt.展开更多
In order to investigate the change in liquid microstructure of Al-Si alloytreated by electric pulse (EP), X-ray diffraction tests with liquid Al-Si alloy and ZL109 alloytreated or not by EP were carried out. The resul...In order to investigate the change in liquid microstructure of Al-Si alloytreated by electric pulse (EP), X-ray diffraction tests with liquid Al-Si alloy and ZL109 alloytreated or not by EP were carried out. The results show that the number of Al-Si atomic clustersdecreases and that of Al-Al and Si-Si atomic clusters increases for the treated samples. The testswith ZL109 alloy indicate that a large amount of primary crystal Si appears in the solidifiedmicrostructure after treated by EP. It is found that EP can change the microstructure of liquidmetal by affecting the probability of electrons appearing in different atoms (Al and Si) in theliquid metal. The combining force of different atoms decreases relatively, and that of the sameatoms increases, which is the main reason of reducing the atomic cluster with different atoms(Al-Si) and increasing the atomic cluster with the same atoms (Al-Al, Si-Si). The increasing of theatomic cluster with the same atom cluster resulted in the increasing of Si activity and the higherpoint of eutectics in the phase diagram. It makes a lot of primary silicon appeared in ZL109 alloy.展开更多
基金Funded by the National Natural Science Foundation of China(Nos.U1934206,52208299,and 52108260)the 2021 Tencent XPLORER PRIZE。
文摘In order to clarify the fatigue damage evolution of concrete exposed to flexural fatigue loads,ultrasonic pulse velocity(UPV),impact-echo technology and surface electrical resistance(SR) method were used.Damage variable based on the change of velocity of ultrasonic pulse(Du) and impact elastic wave(Di)were defined according to the classical damage theory.The influences of stress level,loading frequency and concrete strength on damage variable were measured.The experimental results show that Du and Di both present a three-stages trend for concrete exposed to fatigue loads.Since impact elastic wave is more sensitive to the microstructure damage in stage Ⅲ,the critical damage variable,i e,the damage variable before the final fracture of concrete of Di is slightly higher than that of Du.Meanwhile,the evolution of SR of concrete exposed to fatigue loads were analyzed and the relationship between SR and Du,SR and Di of concrete exposed to fatigue loads were established.It is found that the SR of concrete was decreased with the increasing fatigue cycles,indicating that surface electrical resistance method can also be applied to describe the damage of ballastless track concrete exposed to fatigue loads.
基金Supported by the National Natural Science Foundation,China,No.82272568,81902247,and 32201013Natural Science Foundation of Shandong Province,China,No.ZR2021QH275+1 种基金Natural Science Foundation of Jinan City,China,No.202225070Guangdong Basic and Applied Basic Research Foundation,China,No.2022A1515220056.
文摘BACKGROUND Mesenchymal stem cells(MSCs)modulated by various exogenous signals have been applied extensively in regenerative medicine research.Notably,nanosecond pulsed electric fields(nsPEFs),characterized by short duration and high strength,significantly influence cell phenotypes and regulate MSCs differentiation via multiple pathways.Consequently,we used transcriptomics to study changes in messenger RNA(mRNA),long noncoding RNA(lncRNA),microRNA(miRNA),and circular RNA expression during nsPEFs application.AIM To explore gene expression profiles and potential transcriptional regulatory mechanisms in MSCs pretreated with nsPEFs.METHODS The impact of nsPEFs on the MSCs transcriptome was investigated through whole transcriptome sequencing.MSCs were pretreated with 5-pulse nsPEFs(100 ns at 10 kV/cm,1 Hz),followed by total RNA isolation.Each transcript was normalized by fragments per kilobase per million.Fold change and difference significance were applied to screen the differentially expressed genes(DEGs).Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed to elucidate gene functions,complemented by quantitative polymerase chain reaction verification.RESULTS In total,263 DEGs were discovered,with 92 upregulated and 171 downregulated.DEGs were predominantly enriched in epithelial cell proliferation,osteoblast differentiation,mesenchymal cell differentiation,nuclear division,and wound healing.Regarding cellular components,DEGs are primarily involved in condensed chromosome,chromosomal region,actin cytoskeleton,and kinetochore.From aspect of molecular functions,DEGs are mainly involved in glycosaminoglycan binding,integrin binding,nuclear steroid receptor activity,cytoskeletal motor activity,and steroid binding.Quantitative real-time polymerase chain reaction confirmed targeted transcript regulation.CONCLUSION Our systematic investigation of the wide-ranging transcriptional pattern modulated by nsPEFs revealed the differential expression of 263 mRNAs,2 miRNAs,and 65 lncRNAs.Our study demonstrates that nsPEFs may affect stem cells through several signaling pathways,which are involved in vesicular transport,calcium ion transport,cytoskeleton,and cell differentiation.
文摘The Gibbs free energy is strongly related to the stability and catalytic function of an enzyme through the energetic changes that occur in the chemical reactions the enzyme catalyzes. In this in silico study, a pulsed electric field was applied to an azoreductase, and its effect on the Gibbs free energy of molecular docking with two dyes was measured. We propose that certain stimuli from a pulsed electric field favor the structural stability of the enzyme by promoting an arrangement in the active site, potentially leading to an enhancement of enzymatic activity overall.
基金supported by the Key-Area Research and Development Program of Guangdong Province grant numbers 21202107201900003,21202107201900005.
文摘Background:The polyphenols extraction of Phyllanthus emblica is primarily carried out using organic solvents,and assisted by physical fields such as ultrasound and microwave for extraction.High voltage pulsed electric field technology(PEF)is a non-thermal processing technology that has high efficiency and minimal damage to thermosensitive substances.PEF has been applied to plant extraction in many studies,however,the extraction of polyphenols from Phyllanthus emblica using the PEF has still not been reported;Objective:This study explores the optimal extraction process of polyphenols from Phyllanthus emblica using the PEF,and investigates its relaxation and anti-wrinkle based on anti-oxidation and anti-inflammatory experiment,in order to develop a Phyllanthus emblica extract with substantial efficacy;Materials and Methods:The method of Phyllanthus emblica extract using PEF is established,and compared with a traditional extraction method.The experimental conditions,such as electric field intensity(0.5–6.0 kV/cm),pulse times(20−120),extraction time(0–60 min)and material concentration(0.5%∼3%),are investigated and optimized using orthogonal experiments;Results:the polyphenols in the Phyllanthus emblica extract were highest at the electric field intensity of 5 kV/cm,120 pulses,extraction time of 30 min,and 2%material concentration.The PEFcontained more polyphenols than the conventional water extraction and ultrasound-assisted extraction.The Phyllanthus emblica extract had substantial antioxidant and anti-inflammatory effects,with a good clearance effect on DPPH(IC50 of 1.82%)and ABTS(IC50 of 1.80%)radicals.At the Phyllanthus emblica extract concentration of 1.25%,inflammatory factors(TNF-α)were reduced by 47.08%;and Conclusion:The PEF is a leading-edge and promising method for preparing Phyllanthus emblica extracts.
基金supported by the National Basic Research Program of China(973 Program)(No.2011CB209405)National Natural Science Foundation of China(No.51207154)the Opening Project of State Key Laboratory of Electrical Insulation and Power Equipment in Xi'an Jiaotong University of China(No.EIPE12204)
文摘The characteristics of high pressure sulphur hexafluoride(SF6) discharges in a highly non-uniform electric field under repetitive nanosecond pulses are investigated in this paper.The influencing factors on discharge process,such as gas pressure,pulse repetition frequency(PRF),and number of applied pulses,are analyzed.Experimental results show that the corona intensity weakens with the increase of gas pressure and strengthens with the increase of PRF or number of applied pulses.Spark discharge images suggest that a shorter and thicker discharge plasma channel will lead to a larger discharge current.The number of applied pulses to breakdown descends with the increase of PRF and ascends with the rise of gas pressure.The reduced electric field(E/p) decreases with the increase of PRF in all circumstances.The experimental results provide significant supplements to the dielectric characteristics of strongly electronegative gases under repetitive nanosecond pulses.
基金supported by National Natural Science Foundation of China(No.51877086)。
文摘Atmospheric dielectric barrier discharges driven by repetitive unipolar narrow pulse excitation are investigated numerically by using one-dimensional fluid models.The one-dimensional simulation focuses on the effects of applied voltage amplitude,pulse repetition frequency,gap width andγcoefficient on the multiple-current-pulse(MCP)discharge.The results indicate that the MCP behavior will lead to the stratification of electron density distribution in axial direction.Traditional MCP manipulating methods,such as reducing the applied voltage amplitude,increasing the applied voltage frequency,adjusting the gap width,cannot regulate MCPs exhibiting in this work.Further analyses reveal that the increasing electric field of the cathode fall region is the basis for the emergence of MCP behavior.
基金Project(2009AA03Z110) supported by the National High Technology Research and Development Program of ChinaProject (2011CB012902) supported by the National Basic Research Program of China
文摘The application of electric current pulse(ECP) to a solidification process refers to the immersion of electrodes into the liquid metal and the employment of thermal insulators on the upper surface of metal.In order to ascertain the effects of these two factors on the structure refinement by the ECP technique,three groups of experiments were performed with different types of electrodes or various thermal insulators.By the comparison between solidification structures under different conditions,it is followed that the electrode and the thermal insulator have an obvious influence on the grain refinement under an applied ECP,and further analysis demonstrates that the thermal conditions of the liquid surface play a vital role in the modification of solidification structure.Also,the results support the viewpoint that most of the equiaxed grains originate from the liquid surface subjected to an ECP.
基金Project(SELF-2011-01)supported by the Open Project of Shanghai Key Laboratory of Modern Metallurgy and Materials Processing,ChinaProjects(51204109,51035004)supported by the National Natural Science Foundation of China
文摘A mathematical model considering free nuclei was developed to reveal the migration behavior of the free nuclei. Numerical simulation results show that most of the nuclei on the top surface of the melt move downwards and distribute randomly inside the Al melt, which induces more nucleation sites resulting in grain refinement. At the same time, the effect of nuclei size on the nuclei distribution and refinement employing electric current pulse (ECP) was also investigated. The smaller nuclei migrate a short distance with the Al melt at lower speed. But for the larger nuclei, the migration downwards with higher speed benefits the refinement of interior grains of the melt. The research results help to better understand the refinement process and provide a more reasonable explanation of the grain refinement mechanism using ECP.
基金Project(51074087)supported by the National Natural Science Foundation of ChinaProject(201102088)supported by the Natural Science Foundation of Liaoning Province,China+1 种基金Project(LJQ2011065)supported by Liaoning Excellent Talents in University,ChinaProject(2010921096)supported by Liaoning Baiqianwan Talents Program,China
文摘The electric pulse modification (EP, EPM) of liquid metal is a novel method for grain refinement. The structure of EP-modified Al-5%Cu melt was characterized by high-temperature X-ray diffractometry. The results show that the Cu-containing Al clusters remarkably increase in the EP-modified melt, furthermore, these clusters in that case tend to contract due to the decrease of relevant atomic radius and the co-ordination number. This kind of liquid-phase structure leads to a more homogeneous Cu-rich phase distribution in the final solidification structure. Differential scanning calorimetry (DSC) tests indicate that the solidification super-cooling degree of the EP-modified liquid phase is 2.36 times that of the unmodified. These facts suggest that the atom cluster changes in EP-modified Al-5%Cu melt would disagree with that by EPM model previously proposed in liquid pure metal.
文摘In order to improve the charging efficiency of lead acid battery, shorten the charging time and avoid the battery polarization, a new charging method was put forward. Based on the analyzed results of charging characteristic of lead acid battery, a pulse quick charger is designed to adjust the charging current pulse’s amplitude and pulse width automatically stage by stage according to the measured battery voltage and feedback current. Compared with other kinds of quick chargers, it has such characteristics as shorter charging time, higher charging efficiency and lower temperature increasing during the charging process. As a result, the battery polarization is reduced efficiently.
基金This study was subsidized by Zhuhai Bureau of Science and Technology , Guangdong Province (2000-02-08)
文摘Objective: To evaluate the effect of transcutaneous electric pulse stimulation (TEPS) on hepatic blood flow and parenchymal microcirculation in patients with fatty liver. Methods: A total of 31 fatty liver volunteer patients were observed in this study. Changes of color Doppler energy (CDE) images before and after TEPS of local points nearby the liver were recorded by using color Doppler ultrasound diagnostic apparatus (ACUSON 128XP/10C). Sum of color pixel area (SCPA), average of color value (ACV) and SCPA×ACV (integral) of the hepatic flow images were analyzed by an image processing system, single blind method and paired t-test. Programmed TEPS (0.5- 150 Hz / 2 000 Hz , 10- 25 V ) was applied to the right Qimen (期门 LR 14)-Jingmen (京门 GB 25), Fuai (腹哀 SP 16)-Ganshu (肝俞 BL 18) respectively for 15 min. Results: Compared with basic values of pretreatment, SCPA, ACV and SCPA×ACV increased significantly (t=2.71, P<0.02; t=3.42, P<0.01; and t=8.15, P<0.001) after TEPS, meaning improvement of hepatic blood flow supply. Conclusion: TEPS of acupoints near the liver can improve hepatic blood flow and hepatic parenchymal microcirculation in patients with fatty liver.
基金supported by a grant from the National Natural Sciences Foundation of China (No 30500233)
文摘This study investigated whether the curative effect of short-pulse gastric electrical stimulation (GES) on the vasopressin-induced dyspeptic symptoms was mediated by central opioid peptide-producing neurons. Five female beagle dogs implanted with 1 pair of electrodes in gastric serosa were used in a two-experiment study. In experiment one, the brain was scanned by positron emission tomography in 3 dogs with and without short-pulse GES, and the radioactivity in nuclei of solitary tract (NST) and hypothalamus was detected. Experiment two was composed of 4 sessions. In session one, the dogs were injected with vasopressin in the absence of short-pulse GES. With session two, the short-pulse GES was simultaneously given via the electrodes with the injection of vasopressin. In sessions three and four, naloxone and naloxone methiodide was administered respectively in the presence of short-pulse GES. Motion sickness-like symptoms were scored and compared among the different sessions. The results showed that the short-pulse GES significantly increased the radioactivity in NST and hypothalamic nuclei (P〈0.05, vs control). The short-pulse GES could ameliorate the vasopressin-induced motion sickness-like symptoms in dogs. Naloxone, but not naloxone methiodide could attenuate the curative effects of short-pulse GES. It is concluded that NST and hypothalamic nuclei may participate in the mediation of the curative effects of short-pulse GES on dyspepsia-like symptoms. Central opioid peptide-containing neurons presumably mediate the therapeutic effect on dyspeptic symptoms of short-pulse GES.
基金Item Sponsored by National Natural Science Foundation of China(50174028and50674054)
文摘The heredity of aluminum melt under the action of pulse electric field was investigated by means of the remelt experiment. A new hereditary criterion under this condition was proposed; in the meantime, the differential transferability of genetic carrier in activated melt among filial generations was validated with the aid of DSC.
基金Project supported by the Technology Innovation Project of University (No. 705013)
文摘A new process for removing the pollutants in aqueous solution-activated alumina bed in pulsed high-voltage electric field was investigated for the removal of phenol under different conditions. The experimental results indicated the increase in removal rate with increasing applied voltage, increasing pH value of the solution, aeration, and adding Fe^2+. The removal rate of phenol could reach 72.1% when air aeration flow rate was 1200 ml/min, and 88.2% when 0.05 mmol/L Fe^2+ was added into the solution under the conditions of applied voltage 25 kV, initial phenol concentration of 5 mg/L, and initial pH value 5.5. The addition of sodium carbonate reduced the phenol removal rate. In the pulsed high-voltage electric field, local discharge occurred at the surface of activated alumina, which promoted phenol degradation in the thin water film. At the same time, the space-time distribution of gas-liquid phases was more uniform and the contact areas of the activated species generated from the discharge and the pollutant molecules were much wider due to the effect of the activated alumina bed. The synthetical effects of the pulsed high-voltage electric field and the activated alumina particles accelerated phenol degradation.
基金This work is financially supported by the National High Technology Research and Development Program of China (No.2001AA337040).
文摘The effect of electric pulse modifying on the solidification structure of an Al-15%Si alloy was investigated. The result shows that the primary silicon disappears sometimes and the eutectic phase is refined after the treatrnent of EP (electric pulse) though there are different modalities in different treating durations. DSC (differential scanning calorimetry) analysis indicates that the super-cooling texture decreases and the freezing range narrows evidently after the electric pulse treatment.
基金Item Sponsored by National Natural Science Foundation of China (50174028 ,50674054)
文摘Heredity of high pure aluminum melts under different pulse electric field was investigated by means of repetitious remelt experiment. The results indicate that the genetic coefficient by measurement of grain size of cast structure has a close relation with pulse voltage. Moreover, the hereditary law accords with the function of In = 1+ e^-an+β. The stability of genetic carrier (cluster) comprises in the competition between repetitious cooling and heating impulse and the effect of electric pulse modification.
基金Supported by the National Science and Technology Major Project of China,No.2018ZX10301201 and No.2017ZX10302201National Key Research and Development Program of China,No.2018YFC2000500。
文摘The number of liver cancer patients is likely to continue to increase in the coming decades due to the aging of the population and changing risk factors.Traditional treatments cannot meet the needs of all patients.New treatment methods evolved from pulsed electric field ablation are expected to lead to breakthroughs in the treatment of liver cancer.This paper reviews the safety and efficacy of irreversible electroporation in clinical studies,the methods to detect and evaluate its ablation effect,the improvements in equipment and its antitumor effect,and animal and clinical trials on electrochemotherapy.We also summarize studies on the most novel nanosecond pulsed electric field ablation techniques in vitro and in vivo.These research results are certain to promote the progress of pulsed electric field in the treatment of liver cancer.
基金This work was financially supported by the National Natural Science Foundation of China (No.50174028).
文摘Electric pulse modification (EPM) is a novel technique that reduces grain size by altering the structure of a melt. It was investigated that the response of the casting structure of high pure aluminum to EPM in different superheated melts. The results indicate that the grain refining effect of a given pulse electric field holds an optimal temperature range, moreover, a lower or higher superheated temperature will both disadvantage the improvements of casting structure. It essentially lies in the cooperative action between the distorted absorption of clusters and the activated capability of atoms in the aluminum melt.
文摘In order to investigate the change in liquid microstructure of Al-Si alloytreated by electric pulse (EP), X-ray diffraction tests with liquid Al-Si alloy and ZL109 alloytreated or not by EP were carried out. The results show that the number of Al-Si atomic clustersdecreases and that of Al-Al and Si-Si atomic clusters increases for the treated samples. The testswith ZL109 alloy indicate that a large amount of primary crystal Si appears in the solidifiedmicrostructure after treated by EP. It is found that EP can change the microstructure of liquidmetal by affecting the probability of electrons appearing in different atoms (Al and Si) in theliquid metal. The combining force of different atoms decreases relatively, and that of the sameatoms increases, which is the main reason of reducing the atomic cluster with different atoms(Al-Si) and increasing the atomic cluster with the same atoms (Al-Al, Si-Si). The increasing of theatomic cluster with the same atom cluster resulted in the increasing of Si activity and the higherpoint of eutectics in the phase diagram. It makes a lot of primary silicon appeared in ZL109 alloy.