Recently published results of field and laboratory experiments on the seismic/acoustic response to injection of direct current (DC) pulses into the Earth crust or stressed rock samples raised a question on a possibi...Recently published results of field and laboratory experiments on the seismic/acoustic response to injection of direct current (DC) pulses into the Earth crust or stressed rock samples raised a question on a possibility of electrical earthquake triggering. A physical mechanism of the considered phenomenon is not clear yet in view of the very low current density (10-7-10-s A/m^2) generated by the pulsed power systems at the epicenter depth (5-10 km) of local earthquakes occurred just after the current injection. The paper describes results of laboratory "earthquake" triggering by DC pulses under conditions of a spring-block model simulated the seismogenic fault. It is experimentally shown that the electric triggering of the laboratory "earthquake" (sharp slip of a movable block of the spring-block system) is possible only within a range of subcritical state of the system, when the shear stress between the movable and fixed blocks obtains 0.98-0.99 of its critical value. The threshold of electric triggering action is about 20 A/m^2 that is 7-8 orders of magnitude higher than estimated electric current density for Bishkek test site (Northern Tien Shan, Kirghizia) where the seismic response to the man-made electric action was observed. In this connection, the electric triggering phenomena may be explained by contraction of electric current in the narrow conductive areas of the faults and the corresponding increase in current density or by involving the secondary triggering mechanisms like electromagnetic stimulation of conductive fluid migration into the fault area resulted in decrease in the fault strength properties.展开更多
The author designed a family of nonlinear static electric-springs. The nonlinear oscillations of a massively charged particle under the influence of one such spring are studied. The equation of motion of the spring-ma...The author designed a family of nonlinear static electric-springs. The nonlinear oscillations of a massively charged particle under the influence of one such spring are studied. The equation of motion of the spring-mass system is highly nonlinear. Utilizing Mathematica [1] the equation of motion is solved numerically. The kinematics of the particle namely, its position, velocity and acceleration as a function of time, are displayed in three separate phase diagrams. Energy of the oscillator is analyzed. The nonlinear motion of the charged particle is set into an actual three-dimensional setting and animated for a comprehensive understanding.展开更多
This paper addresses the planning problem of parallel DC electric springs (DCESs). DCES, a demand-side management method, realizes automatic matching of power consumption and power generation by adjusting non-critical...This paper addresses the planning problem of parallel DC electric springs (DCESs). DCES, a demand-side management method, realizes automatic matching of power consumption and power generation by adjusting non-critical load (NCL) and internal storage. It can offer higher power quality to critical load (CL), reduce power imbalance and relieve pressure on energy storage systems (RESs). In this paper, a planning method for parallel DCESs is proposed to maximize stability gain, economic benefits, and penetration of RESs. The planning model is a master optimization with sub-optimization to highlight the priority of objectives. Master optimization is used to improve stability of the network, and sub-optimization aims to improve economic benefit and allowable penetration of RESs. This issue is a multivariable nonlinear mixed integer problem, requiring huge calculations by using common solvers. Therefore, particle Swarm optimization (PSO) and Elitist non-dominated sorting genetic algorithm (NSGA-II) were used to solve this model. Considering uncertainty of RESs, this paper verifies effectiveness of the proposed planning method on IEEE 33-bus system based on deterministic scenarios obtained by scenario analysis.展开更多
In order to improve the reliability of the power system and provide uninterrupted power to the consumer, automatic reclosing (ARC) devices are often used in overhead power lines. On top of that, the condition of short...In order to improve the reliability of the power system and provide uninterrupted power to the consumer, automatic reclosing (ARC) devices are often used in overhead power lines. On top of that, the condition of short-circuit elimination or removal during ARC recloser depends on many random factors. In this article, the number of outages of 110 kV overhead lines in the Khangai region of Mongolia was studied, and the statistics of ARC device operation were compared with international standards. Also, from the works produced by scientists from foreign countries, the development level and innovative trends of ARC devices were compared and studied, and the opportunity to introduce them to Mongolia’s grid system was sought. Furthermore, the 110 kV transmission lines outage and the operation of the ARC devices installed in the Khangai region of Mongolia were studied. Hence, the average operation success rate of the ARC device in the last ten years was 76%. It was also found that the number of outages of 110 kV power lines is 8 per year on average, which is 2 - 3 times higher than the international norm. Eventually, the power grid scheme of the Khangai region, especially the Bulgan-Murun 110 kV distribution network, was modelled by Digsilent Powerfactory by including the features of Mongolia’s power transmission network, and the operation of the model was checked by the load flow function of the software.展开更多
针对新能源接入、负荷投切所导致的直流微电网电压质量下降与系统呈现低惯性的问题,传统惯性控制随着电网规模的扩大适应性降低,因此提出一种多直流电力弹簧(DC electric springs,DCESs)单元下的直流微网电压协同控制策略,首先采用分布...针对新能源接入、负荷投切所导致的直流微电网电压质量下降与系统呈现低惯性的问题,传统惯性控制随着电网规模的扩大适应性降低,因此提出一种多直流电力弹簧(DC electric springs,DCESs)单元下的直流微网电压协同控制策略,首先采用分布式一致性算法通过稀疏通信网络交换本地信息与相邻信息,求解全局母线电压平均值,并引入积分环节提高传统通信方式的收敛性。接着考虑系统负荷投切以及源侧功率波动导致的电压突变,基于DCES中的双向全桥DC/DC变换器构建预测模型,令各DCES根据系统功率波动状态自适应求解最佳虚拟电容值,平滑直流母线电压,提升了动态响应速度,同时分析了系统电压的收敛性与稳定性。最后通过MATLAB/Simulink在随机波动负荷、实际光伏场景下从电压质量、即插即用性能、系统惯性3个方面验证了模型的有效性,所提出的控制策略在保证系统电压平稳的同时,具有更优的动态响应能力。展开更多
针对未知的污染场地,为了准确估计污染物运移模型的参数,提出一种基于多重数据同化集合平滑器(ensemble smoother with multiple data assimilation,ES-MDA)算法的地下水模型参数反演方法,通过融合由高密度电阻率(electrical resistance...针对未知的污染场地,为了准确估计污染物运移模型的参数,提出一种基于多重数据同化集合平滑器(ensemble smoother with multiple data assimilation,ES-MDA)算法的地下水模型参数反演方法,通过融合由高密度电阻率(electrical resistance tomography,ERT)法采集的ERT观测数据,实现对污染源源强和渗透系数场的联合反演。以此为基础设计3组数值算例,比较不同类型观测数据对反演精度的影响。研究结果表明:融合ERT数据的ES-MDA算法对模型参数的反演精度更高,并且将ERT数据和传统的质量浓度与水头观测数据相结合,能进一步优化反演结果。展开更多
基金funded by Russian Foundation for Basic Research according to research project No.15-55-53104National Natural Science Foundation of China according to International cooperation project No.41511130032
文摘Recently published results of field and laboratory experiments on the seismic/acoustic response to injection of direct current (DC) pulses into the Earth crust or stressed rock samples raised a question on a possibility of electrical earthquake triggering. A physical mechanism of the considered phenomenon is not clear yet in view of the very low current density (10-7-10-s A/m^2) generated by the pulsed power systems at the epicenter depth (5-10 km) of local earthquakes occurred just after the current injection. The paper describes results of laboratory "earthquake" triggering by DC pulses under conditions of a spring-block model simulated the seismogenic fault. It is experimentally shown that the electric triggering of the laboratory "earthquake" (sharp slip of a movable block of the spring-block system) is possible only within a range of subcritical state of the system, when the shear stress between the movable and fixed blocks obtains 0.98-0.99 of its critical value. The threshold of electric triggering action is about 20 A/m^2 that is 7-8 orders of magnitude higher than estimated electric current density for Bishkek test site (Northern Tien Shan, Kirghizia) where the seismic response to the man-made electric action was observed. In this connection, the electric triggering phenomena may be explained by contraction of electric current in the narrow conductive areas of the faults and the corresponding increase in current density or by involving the secondary triggering mechanisms like electromagnetic stimulation of conductive fluid migration into the fault area resulted in decrease in the fault strength properties.
文摘The author designed a family of nonlinear static electric-springs. The nonlinear oscillations of a massively charged particle under the influence of one such spring are studied. The equation of motion of the spring-mass system is highly nonlinear. Utilizing Mathematica [1] the equation of motion is solved numerically. The kinematics of the particle namely, its position, velocity and acceleration as a function of time, are displayed in three separate phase diagrams. Energy of the oscillator is analyzed. The nonlinear motion of the charged particle is set into an actual three-dimensional setting and animated for a comprehensive understanding.
基金supported in part by the National Natural Science Foundation of China under Grant No.52177171 and 51877040Jiangsu Provincial Key Laboratory of Smart Grid Technology and Equipment,Southeast University,China.
文摘This paper addresses the planning problem of parallel DC electric springs (DCESs). DCES, a demand-side management method, realizes automatic matching of power consumption and power generation by adjusting non-critical load (NCL) and internal storage. It can offer higher power quality to critical load (CL), reduce power imbalance and relieve pressure on energy storage systems (RESs). In this paper, a planning method for parallel DCESs is proposed to maximize stability gain, economic benefits, and penetration of RESs. The planning model is a master optimization with sub-optimization to highlight the priority of objectives. Master optimization is used to improve stability of the network, and sub-optimization aims to improve economic benefit and allowable penetration of RESs. This issue is a multivariable nonlinear mixed integer problem, requiring huge calculations by using common solvers. Therefore, particle Swarm optimization (PSO) and Elitist non-dominated sorting genetic algorithm (NSGA-II) were used to solve this model. Considering uncertainty of RESs, this paper verifies effectiveness of the proposed planning method on IEEE 33-bus system based on deterministic scenarios obtained by scenario analysis.
文摘In order to improve the reliability of the power system and provide uninterrupted power to the consumer, automatic reclosing (ARC) devices are often used in overhead power lines. On top of that, the condition of short-circuit elimination or removal during ARC recloser depends on many random factors. In this article, the number of outages of 110 kV overhead lines in the Khangai region of Mongolia was studied, and the statistics of ARC device operation were compared with international standards. Also, from the works produced by scientists from foreign countries, the development level and innovative trends of ARC devices were compared and studied, and the opportunity to introduce them to Mongolia’s grid system was sought. Furthermore, the 110 kV transmission lines outage and the operation of the ARC devices installed in the Khangai region of Mongolia were studied. Hence, the average operation success rate of the ARC device in the last ten years was 76%. It was also found that the number of outages of 110 kV power lines is 8 per year on average, which is 2 - 3 times higher than the international norm. Eventually, the power grid scheme of the Khangai region, especially the Bulgan-Murun 110 kV distribution network, was modelled by Digsilent Powerfactory by including the features of Mongolia’s power transmission network, and the operation of the model was checked by the load flow function of the software.
文摘针对新能源接入、负荷投切所导致的直流微电网电压质量下降与系统呈现低惯性的问题,传统惯性控制随着电网规模的扩大适应性降低,因此提出一种多直流电力弹簧(DC electric springs,DCESs)单元下的直流微网电压协同控制策略,首先采用分布式一致性算法通过稀疏通信网络交换本地信息与相邻信息,求解全局母线电压平均值,并引入积分环节提高传统通信方式的收敛性。接着考虑系统负荷投切以及源侧功率波动导致的电压突变,基于DCES中的双向全桥DC/DC变换器构建预测模型,令各DCES根据系统功率波动状态自适应求解最佳虚拟电容值,平滑直流母线电压,提升了动态响应速度,同时分析了系统电压的收敛性与稳定性。最后通过MATLAB/Simulink在随机波动负荷、实际光伏场景下从电压质量、即插即用性能、系统惯性3个方面验证了模型的有效性,所提出的控制策略在保证系统电压平稳的同时,具有更优的动态响应能力。
文摘针对未知的污染场地,为了准确估计污染物运移模型的参数,提出一种基于多重数据同化集合平滑器(ensemble smoother with multiple data assimilation,ES-MDA)算法的地下水模型参数反演方法,通过融合由高密度电阻率(electrical resistance tomography,ERT)法采集的ERT观测数据,实现对污染源源强和渗透系数场的联合反演。以此为基础设计3组数值算例,比较不同类型观测数据对反演精度的影响。研究结果表明:融合ERT数据的ES-MDA算法对模型参数的反演精度更高,并且将ERT数据和传统的质量浓度与水头观测数据相结合,能进一步优化反演结果。