期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Electric-driven flexible-roller nanoimprint lithography on the stress-sensitive warped wafer
1
作者 Yu Fan Chunhui Wang +6 位作者 Jiaxing Sun Xiaogang Peng Hongmiao Tian Xiangming Li Xiaoliang Chen Xiaoming Chen Jinyou Shao 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期608-618,共11页
Surface nanopatterning of semiconductor optoelectronic devices is a powerful way to improve their quality and performance.However,photoelectric devices’inherent stress sensitivity and inevitable warpage pose a huge c... Surface nanopatterning of semiconductor optoelectronic devices is a powerful way to improve their quality and performance.However,photoelectric devices’inherent stress sensitivity and inevitable warpage pose a huge challenge on fabricating nanostructures large-scale.Electric-driven flexible-roller nanoimprint lithography for nanopatterning the optoelectronic wafer is proposed in this study.The flexible nanoimprint template twining around a roller is continuously released and recovered,controlled by the roller’s simple motion.The electric field applied to the template and substrate provides the driving force.The contact line of the template and the substrate gradually moves with the roller to enable scanning and adapting to the entire warped substrate,under the electric field.In addition,the driving force generated from electric field is applied to the surface of substrate,so that the substrate is free from external pressure.Furthermore,liquid resist completely fills in microcavities on the template by powerful electric field force,to ensure the fidelity of the nanostructures.The proposed nanoimprint technology is validated on the prototype.Finally,nano-grating structures are fabricated on a gallium nitride light-emitting diode chip adopting the solution,achieving polarization of the light source. 展开更多
关键词 nanoimprinting electric-driven flexible-roller warped stress-sensitive
下载PDF
Polymer translocation through nanopore under external electric field:dissipative particle dynamics study
2
作者 Jinglin MAO Yi YAO +1 位作者 Zhewei ZHOU Guohui HU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第12期1581-1592,共12页
The DNA sequencing technology has achieved a leapfrog development in recent years. As a new generation of the DNA sequencing technology, nanopore sequenc- ing has shown a broad application prospect and attracted vast ... The DNA sequencing technology has achieved a leapfrog development in recent years. As a new generation of the DNA sequencing technology, nanopore sequenc- ing has shown a broad application prospect and attracted vast research interests since it was proposed. In the present study, the dynamics of the electric-driven translocation of a homopolymer through a nanopore is investigated by the dissipative particle dynam- ics (DPD), in which the homopolymer is modeled as a worm-like chain (WLC). The DPD simulations show that the polymer chain undergoes conformation changes during the translocation process. The different structures of the polymer in the translocation process, i.e., single-file, double folded, and partially folded, and the induced current block- ades are analyzed. It is found that the current blockades have different magnitudes due to the polymer molecules traversing the pore with different folding conformations. The nanoscale vortices caused by the concentration polarization layers (CPLs) in the vicinity of the sheet are also studied. The results indicate that the translocation of the polymer has the effect of eliminating the vortices in the polyelectrolyte solution. These findings are expected to provide the theoretical guide for improving the nanopore sequencing tech- nique. 展开更多
关键词 nanopore sequencing technology electric-driven translocation dissipative particle dynamics (DPD)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部