期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Electrical characteristics of new three-phase traction power supply system for rail transit
1
作者 Xiaohong Huang Hanlin Wang +4 位作者 Qunzhan Li Naiqi Yang Tao Ren You Peng Haoyang Li 《Railway Engineering Science》 2023年第1期75-88,共14页
A novel three-phase traction power supply system is proposed to eliminate the adverse effects caused by electric phase separation in catenary and accomplish a unifying manner of traction power supply for rail transit.... A novel three-phase traction power supply system is proposed to eliminate the adverse effects caused by electric phase separation in catenary and accomplish a unifying manner of traction power supply for rail transit.With the application of two-stage three-phase continuous power supply structure,the electrical characteristics exhibit new features differing from the existing traction system.In this work,the principle for voltage levels determining two-stage network is dissected in accordance with the requirements of traction network and electric locomotive.The equivalent model of three-phase traction system is built for deducing the formula of current distribution and voltage losses.Based on the chain network model of the traction network,a simulation model is established to analyze the electrical characteristics such as traction current distribution,voltage losses,system equivalent impedance,voltage distribution,voltage unbalance and regenerative energy utilization.In a few words,quite a lot traction current of about 99%is undertaken by long-section cable network.The proportion of system voltage losses is small attributed to the two-stage three-phase power supply structure,and the voltage unbal-ance caused by impedance asymmetry of traction network is less than 1‰.In addition,the utilization rate of regenerative energy for locomotive achieves a significant promotion of over 97%. 展开更多
关键词 Three-phase AC power supply Two-stage power supply structure electrical characteristics Current distribution Voltage losses Regenerative energy
下载PDF
Electrical characteristics of laminar propane flame during head-on quenching 被引量:1
2
作者 GUO Li ZHAI Ming +1 位作者 ZHANG YiChi DONG Peng 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第8期1497-1508,共12页
The electrical characteristics of laminar propane flame during head-on quenching were investigated experimentally and computationally.A variable small electric field was applied between the burner and the quenching pl... The electrical characteristics of laminar propane flame during head-on quenching were investigated experimentally and computationally.A variable small electric field was applied between the burner and the quenching plate,which recorded flame current as a function of the height of the quenching plate,for both polarities,different premixed-air volume,and quenching plate materials.More detailed information of flame,such as the distribution of OH radical and main charged species(H3O+and e-)were obtained by using numerical simulation.The results showed that during the head-on quenching,the resistance of the propane flame is on the order of 108Ω,the flame current increases with the increase of the premixed-air volume,and the effect of the quenching plate materials on the flame current is negligible.In addition,it is found that the direction of the electric field has a significant influence on the flame current,indicating the"rectifier"characteristics of the flame.Moreover,it is interestingly found that the trend of flame current for burner-(burner is negative)is more consistent with the trend of the maximum OH mole concentration than for burner+(burner is positive),which indicates that the trend of flame current for burner-can more accurately reflect the combustion state during head-on quenching.And it would be a better choice to use burner as the negative electrode when diagnosing the combustion state with an applied electric field. 展开更多
关键词 electrical characteristics laminar propane flame head-on quenching
原文传递
Event-Driven Non-Intrusive Load Monitoring Algorithm Based on Targeted Mining Multidimensional Load Characteristics
3
作者 Gang Xie Hongpeng Wang 《China Communications》 SCIE CSCD 2023年第5期40-56,共17页
Nowadays,the advancement of nonintrusive load monitoring(NILM)has been hastened by the ever-increasing requirements for the reasonable use of electricity by users and demand side management.Although existing researche... Nowadays,the advancement of nonintrusive load monitoring(NILM)has been hastened by the ever-increasing requirements for the reasonable use of electricity by users and demand side management.Although existing researches have tried their best to extract a wide variety of load features based on transient or steady state of electrical appliances,it is still very difficult for their algorithm to model the load decomposition problem of different electrical appliance types in a targeted manner to jointly mine their proposed features.This paper presents a very effective event-driven NILM solution,which aims to separately model different appliance types to mine the unique characteristics of appliances from multi-dimensional features,so that all electrical appliances can achieve the best classification performance.First,we convert the multi-classification problem into a serial multiple binary classification problem through a pre-sort model to simplify the original problem.Then,ConTrastive Loss K-Nearest Neighbour(CTLKNN)model with trainable weights is proposed to targeted mine appliance load characteristics.The simulation results show the effectiveness and stability of the proposed algorithm.Compared with existing algorithms,the proposed algorithm has improved the identification performance of all electrical appliance types. 展开更多
关键词 non-intrusive load monitoring learning to ranking smart grid electrical characteristics
下载PDF
Electrical responses and classification of complex waterflooded layers in carbonate reservoirs: A case study of Zananor Oilfield, Kazakhstan
4
作者 WANG Fei BIAN Huiyuan +2 位作者 ZHAO Lun YU Jun TAN Chengqian 《Petroleum Exploration and Development》 2020年第6期1299-1306,共8页
Experiments of electrical responses of waterflooded layers were carried out on porous,fractured,porous-fractured and composite cores taken from carbonate reservoirs in the Zananor Oilfield,Kazakhstan to find out the e... Experiments of electrical responses of waterflooded layers were carried out on porous,fractured,porous-fractured and composite cores taken from carbonate reservoirs in the Zananor Oilfield,Kazakhstan to find out the effects of injected water salinity on electrical responses of carbonate reservoirs.On the basis of the experimental results and the mathematical model of calculating oil-water relative permeability of porous reservoirs by resistivity and the relative permeability model of two-phase flow in fractured reservoirs,the classification standards of water-flooded layers suitable for carbonate reservoirs with complex pore structure were established.The results show that the salinity of injected water is the main factor affecting the resistivity of carbonate reservoir.When low salinity water(fresh water)is injected,the relationship curve between resistivity and water saturation is U-shaped.When high salinity water(salt water)is injected,the curve is L-shaped.The classification criteria of water-flooded layers for carbonate reservoirs are as follows:(1)In porous reservoirs,the water cut(fw)is less than or equal to 5%in oil layers,5%–20%in weak water-flooded layers,20%–50%in moderately water-flooded layers,and greater than 50%in strong water-flooded layers.(2)For fractured,porous-fractured and composite reservoirs,the oil layers,weakly water-flooded layers,moderately water-flooded layers,and severely water-flooded layers have a water content of less than or equal to 5%,5%and 10%,10%to 50%,and larger than 50%respectively. 展开更多
关键词 Zananor Oilfield carbonate reservoir water-flooded layer electrical response characteristics relative permeability curve classification criterion of water-flooded level
下载PDF
Experimental and numerical investigation on the uniformity of nanosecond pulsed dielectric barrier discharge influenced by pulse parameters
5
作者 张东璇 余俊贤 +3 位作者 李梦遥 潘杰 刘峰 方志 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第11期31-41,共11页
Nanosecond(ns)pulsed dielectric barrier discharge(DBD)is considered as a promising method to produce controllable large-volume and high activity low-temperature plasma at atmospheric pressure,which makes it suitable f... Nanosecond(ns)pulsed dielectric barrier discharge(DBD)is considered as a promising method to produce controllable large-volume and high activity low-temperature plasma at atmospheric pressure,which makes it suitable for wide applications.In this work,the ns pulse power supply is used to excite Ar DBD and the influences of the pulse parameters(voltage amplitude,pulse width,pulse rise and fall times)on the DBD uniformity are investigated.The gas gap voltage(Ug)and conduct current(Ig)are separated from the measured voltage and current waveforms to analyze the influence of electrical parameters.The spectral line intensity ratio of two Ar excited species is used as an indicator of the electron temperature(Te).The time resolved discharge processes are recorded by an intensified charge-coupled device camera and a one-dimensional fluid model is employed to simulate the spatial and temporal distributions of electrons,ions,metastable argon atoms and Te.Combining the experimental and numerical results,the mechanism of the pulse parameters influencing on the discharge uniformity is discussed.It is shown that the space electric field intensity and the space particles'densities are mainly responsible for the variation of discharge uniformity.With the increase of voltage and pulse width,the electric field intensity and the density of space particles increased,which results in the discharge mode transition from non-uniform to uniform,and then non-uniform.Furthermore,the extension of pulse rise and fall times leads to the discharge transition from uniform to nonuniform.The results are helpful to reveal the mechanism of ns pulsed DBD mode transition and to realize controllable and uniform plasma sources at atmospheric pressure. 展开更多
关键词 nanosecond pulse dielectric barrier discharge electrical characteristics active particle UNIFORMITY
下载PDF
Effects of ignition voltage and electrode structure on electric ignition and combustion characteristics of Ammonium Dinitramide(ADN)-based liquid propellants in electric ignition mode in inert gas environment
6
作者 Lei LI Guoxiu LI +4 位作者 Hongmeng LI Zhaopu YAO Tao ZHANG Jinze WU Shuo ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第4期229-242,共14页
Hydrazine is toxic and carcinogenic, which greatly increases the difficulty of application and no longer meets the needs of green aerospace. As a green propellant, the Ammonium Dinitramide(ADN)-based liquid propellant... Hydrazine is toxic and carcinogenic, which greatly increases the difficulty of application and no longer meets the needs of green aerospace. As a green propellant, the Ammonium Dinitramide(ADN)-based liquid propellant has the advantages of higher specific impulse, being non-toxic,pollution-free, and easy storage. However, an ADN-based space engine in orbit has exposed the problems of high-temperature deactivation of catalysts and cold-start failure. An active ignition technology—electric ignition technology was explored in this paper to break through the technical bottleneck of catalyst deactivation and the inability to a cold start. An experimental system of a constant-volume combustor for the ADN-based liquid propellant based on the electric ignition method was established. The electric ignition and combustion characteristics of the ADN-based liquid propellant in a volume combustor with an electric ignition method were studied. The influencing mechanisms of the ignition voltage and the electrode structure on the electric ignition characteristics of the ADN-based liquid propellant were investigated. An elevation of the ignition voltage could facilitate the ignition process of the ADN-based liquid propellant, curtail electric energy input and heating effect, while exerting an adverse impact on the combustion process of the propellant.An increase in the ignition voltage enhanced the ignition process of the propellant while simultaneously suppressing its combustion process when utilizing mesh electrodes. Compared to the strip electrodes, the mesh electrodes increased the contact area between the electrodes and the propellant,increased the electric energy input power in the electric ignition process, and reduced the ignition delay time. The mesh electrodes could promote the combustion process of the propellant to a certain extent. 展开更多
关键词 ADN-based liquid propellant Resistive ignition electrical ignition characteristic COMBUSTION Inert gas
原文传递
Analyzing Electric Circuits with Computer Algebra
7
作者 Haiduke Sarafian 《American Journal of Computational Mathematics》 2023年第1期91-98,共8页
This report shows how starting from classic electric circuits embodying commonly electric components we have reached semi-complicated circuits embodying the same components that analyzing the signal characteristics re... This report shows how starting from classic electric circuits embodying commonly electric components we have reached semi-complicated circuits embodying the same components that analyzing the signal characteristics requires a Computer Algebra System. Our approach distinguishes itself from the electrical engineers’ (EE) approach that relies on utilizing commercially available software. Our approach step-by-step shows how Kirchhoff’s rules are applied conducive to the needed circuit information. It is shown for the case at hand the characteristic information is a set of coupled differential equations and that with the help of Mathematica numeric solutions are sought. Our report paves the research road for unlimited creative similar circuits with any degree of complications. Occasionally, by tweaking the circuits we have addressed the “what if” scenarios widening the scope of the investigation. Justification of the accuracy of our analysis for the generalized circuits is cross-checked by arranging the components symmetrizing the circuit leading to an intuitively predictable reasonable result. Mathematica codes are embedded assisting the interested reader in producing and extending our results. 展开更多
关键词 characteristics of Electric Circuits DC and AC Driven Circuits Computer Algebra System MATHEMATICA
下载PDF
Study of double-chamber air arc plasma torch and the application in solid-waste disposal
8
作者 曹亚文 李斌 +4 位作者 韩先伟 谭畅 张志豪 张晰哲 魏建国 《Plasma Science and Technology》 SCIE EI CAS CSCD 2021年第6期48-58,共11页
Arc plasma can be applied in hazardous solid waste disposal for higher temperature than common heating methods,but some practical issues exist in practical engineering application.In this study,an air arc plasma torch... Arc plasma can be applied in hazardous solid waste disposal for higher temperature than common heating methods,but some practical issues exist in practical engineering application.In this study,an air arc plasma torch with double chambers and magnetic controlling is designed to realize wide variable power and long electrode life.The detailed characteristics and laws of the air arc are studied.The condition parameters of arc current(I),air flow rate(G)and the structure parameters of inlet area ratios and electrode diameters influence both the arc voltage and arc root positions.The arc rotating driven by magnetic field effectively lengthens the electrode life.The gasification process and product of organic wastes by air plasma are influenced largely by the waste compositions and the air flow rate.A furnace structure with more even atmosphere and longer residence time should be considered for better gasification.Oxygen-deficient environment is important to suppress NOxformation during the application of air plasma.Inorganic solid wastes can be melt by the air plasma and cooled down to form compact vitreous structures in which heavy metals can be locked and the leaching rates significantly decrease down. 展开更多
关键词 air arc plasma electrical characteristic electrode life GASIFICATION MELTING
下载PDF
Spray Pyrolyzed TiO2 Embedded Multi-Layer Front Contact Design for High-Efficiency Perovskite Solar Cells
9
作者 Md.Shahiduzzaman Mohammad Ismail Hossain +11 位作者 Sem Visal Tetsuya Kaneko Wayesh Qarony Shinjiro Umezu Koji Tomita Satoru Iwamori Dietmar Knipp Yuen Hong Tsang Md.Akhtaruzzaman Jean-Michel Nunzi Tetsuya Taima Masao Isomura 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第2期262-278,共17页
The photovoltaic performance of perovskite solar cells(PSCs)can be improved by utilizing efficient front contact.However,it has always been a significant challenge for fabricating high-quality,scalable,controllable,an... The photovoltaic performance of perovskite solar cells(PSCs)can be improved by utilizing efficient front contact.However,it has always been a significant challenge for fabricating high-quality,scalable,controllable,and cost-effective front contact.This study proposes a realistic multi-layer front contact design to realize efficient single-junction PSCs and perovskite/perovskite tandem solar cells(TSCs).As a critical part of the front contact,we prepared a highly compact titanium oxide(TiO2)film by industrially viable Spray Pyrolysis Deposition(SPD),which acts as a potential electron transport layer(ETL)for the fabrication of PSCs.Optimization and reproducibility of the TiO2 ETL were discreetly investigated while fabricating a set of planar PSCs.As the front contact has a significant influence on the optoelectronic properties of PSCs,hence,we investigated the optics and electrical effects of PSCs by three-dimensional(3D)finite-difference time-domain(FDTD)and finite element method(FEM)rigorous simulations.The investigation allows us to compare experimental results with the outcome from simulations.Furthermore,an optimized single-junction PSC is designed to enhance the energy conversion efficiency(ECE)by>30% compared to the planar reference PSC.Finally,the study has been progressed to the realization of all-perovskite TSC that can reach the ECE,exceeding 30%.Detailed guidance for the completion of high-performance PSCs is provided. 展开更多
关键词 PEROVSKITE Tandem solar cells Spray pyrolysis deposition TiO2 compact layer Optics and optimization electrical characteristic
下载PDF
Study of the Formation Conditions of Aluminum Oxide Nanoparticles in an Overstressed Nanosecond Discharge Between Aluminum Electrodes in a Mixture of Nitrogen and Oxygen
10
作者 A.K.Shuaibov A.Y.Minya +4 位作者 A.A.Malinina A.N.Malinin Z.T.Gomoki V.V.Danylo Yu.Yu.Bilak 《Journal of Metallic Material Research》 2020年第2期37-46,共10页
The results of the study of oscillograms of voltage,current,pulsed electric power and energy input into the plasma of an overstressed nanosecond discharge between aluminum electrodes in argon and mixtures of nitrogen ... The results of the study of oscillograms of voltage,current,pulsed electric power and energy input into the plasma of an overstressed nanosecond discharge between aluminum electrodes in argon and mixtures of nitrogen with oxygen(100-1)at pressures in the range of 13.3-103.3 kPa are presented,the emission plasma spectra are studied.It is shown that in mixtures of nitrogen with oxygen at atmospheric pressure,nanoparticles of aluminum oxide(Al2O3)are formed,the luminescence of which manifests itself in the spectral range of 200-600 nm and which is associated with the formation of F-,F+-centers and more complex aggregate formations based on oxygen vacancies.Calculations of the electron-kinetic coefficients of plasma,transport characteristics,such as mean electron energies in the range 5.116-13.41 eV,are given.The electron concentration was 1.6∙10^(20)m^(-3)-1.1∙10^(20)m^(-3)at a current density of 5.1∙10^(6)A/m^(2)and l.02∙10^(7)A/m^(2)on the surface of the electrode of the radiation source(0.196·10^(-4)m^(2)).Also drift velocities,temperatures and concentrations of electrons,specific losses of the discharge power for elastic and inelastic processes of collisions of electrons per unit of the total concentration of the mixture from the reduced electric field strength(E/N)for a mixture of aluminum,nitrogen,oxygen,rate constants of collisions of electrons with aluminum atoms on the E/N parameter in plasma on a mixture of aluminum vapor,oxygen and nitrogen=30:1000:100000 Pa at a total mixture pressure of P=101030 Pa are given. 展开更多
关键词 electrical and optical characteristics of plasma Luminescence of nanostructures Aluminum oxide Overstressed nanosecond discharge NITROGEN OXYGEN
下载PDF
Investigation on the adhesive contact and electrical performance for triboelectric nanogenerator considering polymer viscoelasticity 被引量:1
11
作者 Chenfei Wang Xiaoli Wang +4 位作者 Yanqiang Hu Lizhou Li Zhihao Li Heng Wu Zirui Zhao 《Nano Research》 SCIE EI CSCD 2021年第12期4625-4633,共9页
The triboelectric nanogenerator(TENG)is a new mechanical energy harvesting technology in which the typical viscoelastic material polydimethylsiloxane(PDMS)is widely used.Micro-/nano-textures are often fabricated on th... The triboelectric nanogenerator(TENG)is a new mechanical energy harvesting technology in which the typical viscoelastic material polydimethylsiloxane(PDMS)is widely used.Micro-/nano-textures are often fabricated on the PDMS surface to enhance the electrical performance of TENG.As the contact region decreases to micro/nano scale,the adhesive forces become dominant.However,there is still a lack of contact mechanics model considering both material viscoelasticity and the adhesive forces to guide the surface texture design.In this paper,the explicit data-fitting formulas based on the fractional derivative Zener model are firstly derived to identify the viscoelastic constitutive parameters,which can not only avoid the influence of the initial contact point,but also ensure the accurate conversion between the creep compliance and the relaxation modulus function.Then a viscoelastic-adhesive contact model based on the fitted constitutive parameters is established,and the numerical algorithms such as bi-conjugate stabilized(Bi-CGSTAB)method and fast Fourier transform(FFT)technique are employed to analyze the effects of material viscoelasticity and texture sizes on the contact and electrical performance.It is shown that,compared with results from the elastic-adhesive contact model,the contact area ratio based on the viscoelastic-adhesive contact model is significantly larger,which is much closer to the experimental results.Among the selected sizes of pyramid texture,the higher electrical performance can be obtained from the textures with a smaller pitch and a larger width under the heavier applied load.This study can provide a theoretical reference for the design of viscoelastic surface texture of TENG. 展开更多
关键词 triboelectric nanogenerator surface textures VISCOELASTICITY adhesive forces contact mechanics electrical characteristics
原文传递
Fabrication,characterization and optimization of high conductivity and high quality nanocrystalline molybdenum thin films 被引量:3
12
作者 Anil K.Battu Nanthakishore Makeswaran C.V.Ramana 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第11期2734-2741,共8页
The present study investigated the influence of substrate temperature(Ts)and working pressure(P(Ar))on tailoring the properties of nanocrystalline(nc)molybdenum(Mo)films fabricated by radio-frequency magnetron sputter... The present study investigated the influence of substrate temperature(Ts)and working pressure(P(Ar))on tailoring the properties of nanocrystalline(nc)molybdenum(Mo)films fabricated by radio-frequency magnetron sputtering.The structural,morphological,electrical and optical properties of nc-Mo films were evaluated in detail.The Mo films exhibited(110)orientation with average crystallite size varying from 9 to 22(±1)nm on increasing Ts.Corroborating with structural data,the electrical resistivity decreased from 55μΩcm to 10μΩcm,which is the lowest among all the Mo films.For Mo films deposited under variable P(Ar).the(110)peak intensity decrement coupled with peak broadening on increasing P(Ar).Lower deposition pressure yielded densely packed thin films with superior structural properties along with low resistivity of 15μΩcm.Optimum conditions to produce high quality Mo films with excellent structural,morphological,electrical and optical characteristics for utilization in solar cells as back contact layers were identified. 展开更多
关键词 MOLYBDENUM Thin films Microstructure electrical characteristics Optical properties Solar cells
原文传递
Application of a polymer nanocomposite with carbon filler to limit overvoltages in a photovoltaic element
13
作者 A.V.Ivanchenko A.S.Tonkoshkur 《Journal of Advanced Dielectrics》 CAS 2020年第5期25-31,共7页
The ability of a structure in the form of a photovoltaic element with a built-in posistor layer based on a polymer nanocomposite with carbon filler being in direct thermal contact to protect against overvoltages was s... The ability of a structure in the form of a photovoltaic element with a built-in posistor layer based on a polymer nanocomposite with carbon filler being in direct thermal contact to protect against overvoltages was studied experimentally and by simulation.It was shown that the current and voltage on the reverse-biased p-n junction of the photovoltaic layer are limited and decrease from the moment when the temperature of this structure reaches values close to the tripping temperature of the posistor nano-composite to the low-conductivity state.The temperature of the photovoltaic layer has a value close to the tripping temperature of the posistor layer,which is equal to~125°C.The possibility of realizing protection against reverse electrical overvoltages and thermal breakdown of photovoltaic systems based on photovoltaic elements with built-in layers of posistor polymer nano-composites with carbon fillers was established. 展开更多
关键词 Posistor polymer nanocomposite photovoltaic element OVERVOLTAGE KINETICS electrical characteristics modeling
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部