期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Design of a d_(33)-mode piezocomposite electricity generating element and its application to bridge monitoring
1
作者 Jinkyo F.Choo Van Lai Pham Nam Seo Goo 《Journal of Central South University》 SCIE EI CAS 2014年第7期2572-2578,共7页
The piezoelectric effect is used in sensing applications such as in force and displacement sensors.However,the brittleness and low performance of piezoceramic lead zirconate titanate(PZT) often impede its applicabilit... The piezoelectric effect is used in sensing applications such as in force and displacement sensors.However,the brittleness and low performance of piezoceramic lead zirconate titanate(PZT) often impede its applicability in civil structures which are subjected to large loads.The concept of a piezocomposite electricity generating element(PCGE) has been proposed for improving the electricity generation performance and overcoming the brittleness of piezoceramic wafers.The post-curing residual stress in the PZT layer constitutes a main reason for the PCGE's enhanced performance,and the outer epoxy-based composites protect the brittle PZT layer.A d33-mode PCGE designed for bridge monitoring application was inserted in a bridge bearing to provide a permanent and simple weigh-in-motion system.The designed PCGEs were tested through a series of tests including fatigue and dynamic tests to verify their applicability for monitoring purposes in a bridge structure.A simple beam example was presented to show the applicability of the proposed bridge bearing equipped with the PCGE for adequately measuring the traffic loads. 展开更多
关键词 piezocomposite electricity generating element d33-mode bridge bearing traffic monitoring
下载PDF
Hydration Process and Crack Tendency of Concrete Based on Resistivity and Restrained Shrinkage Crack 被引量:1
2
作者 MUAZU Bawa Samaila 魏小胜 WANG Lei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第5期1026-1030,共5页
Hydration process, crack potential and setting time of concrete grade C30, C40 and C50 were monitored by using a non-contact electrical resistivity apparatus, a novel plastic ring mould and penetration resistance meth... Hydration process, crack potential and setting time of concrete grade C30, C40 and C50 were monitored by using a non-contact electrical resistivity apparatus, a novel plastic ring mould and penetration resistance methods, respectively. The results show the highest resistivity of C30 at the early stage until a point when C50 accelerated and overtook the others. It has been experimentally confirmed that the crossing point of C30 and C50 corresponds to the final setting time of C50. From resistivity derivative curve, four different stages were observed upon which the hydration process is classified; these are dissolution, induction, acceleration and deceleration periods. Consequently, restrained shrinkage crack and setting time results demonstrated that C50 set and cracked the earliest. The cracking time of all the samples occurred within a reasonable experimental period thus the novel plastic ring is a convenient method for predicting concrete's crack potential. The highest inflection time(t_i) obtained from resistivity curve and the final setting time(t_f) were used with crack time(t_c) in coming up with mathematical models for the prediction of concrete's cracking age for the range of concrete grade considered. Finally, an ANSYS numerical simulation supports the experimental findings in terms of the earliest crack age of C50 and the crack location. 展开更多
关键词 concrete electrical resistivity restrained shrinkage crack setting time finite element simulation
下载PDF
Effects of operational and structural parameters on cell voltage of industrial magnesium electrolysis cells 被引量:5
3
作者 Ze Sun Chenglin Liu +2 位作者 Guimin Lu Xingfu Song Jianguo Yu 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2015年第4期522-531,共10页
Electric field is the energy foundation of the electrolysis process and the source of the multiphysical fields in a magnesium electrolysis cell. In this study, a three-dimensional numerical model was developed and use... Electric field is the energy foundation of the electrolysis process and the source of the multiphysical fields in a magnesium electrolysis cell. In this study, a three-dimensional numerical model was developed and used to calculate electric field at the steady state through the finite element analysis. Based on the simulation of the electric field, the operational and structural parameters, such as the current intensity, anode thickness, cathode thickness, and anode-cathode distance (ACD), were investigated to obtain the minimum cell voltage. The optimization is to obtain the minimum resistance voltage which has a significant effect on the energy consumption in the magnesium electrolysis process. The results indicate that the effect of the current intensity on the voltage could be ignored and the effect of the ACD is obvious. Moreover, there is a linear decrease between the voltage and the thicknesses of the anode and cathode; and the anodecathode working height also has a significant effect on the voltage. 展开更多
关键词 magnesium electrolysis cell electric field finite element method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部