Based on three different kinds of conductive paths in microstructure of soil and theory of electrochemical impedance spectroscopy(EIS), an integrated equivalent circuit model and impedance formula for soils were propo...Based on three different kinds of conductive paths in microstructure of soil and theory of electrochemical impedance spectroscopy(EIS), an integrated equivalent circuit model and impedance formula for soils were proposed, which contain 6 meaningful resistance and reactance parameters. Considering the conductive properties of soils and dispersion effects, mathematical equations for impedance under various circuit models were deduced and studied. The mathematical expression presents two semicircles for theoretical EIS Nyquist spectrum, in which the center of one semicircle is degraded to simply the equivalent model. Based on the measured parameters of EIS Nyquist spectrum, meaningful soil parameters can easily be determined. Additionally, EIS was used to investigate the soil properties with different water contents along with the mathematical relationships and mechanism between the physical parameters and water content. Magnitude of the impedance decreases with the increase of testing frequency and water content for Bode graphs. The proposed model would help us to better understand the soil microstructure and properties and offer more reasonable explanations for EIS spectra.展开更多
With the dramatic increase in electric vehicles(EVs)globally,the demand for lithium-ion batteries has grown dramatically,resulting in many batteries being retired in the future.Developing a rapid and robust capacity e...With the dramatic increase in electric vehicles(EVs)globally,the demand for lithium-ion batteries has grown dramatically,resulting in many batteries being retired in the future.Developing a rapid and robust capacity estimation method is a challenging work to recognize the battery aging level on service and provide regroup strategy of the retied batteries in secondary use.There are still limitations on the current rapid battery capacity estimation methods,such as direct current internal resistance(DCIR)and electrochemical impedance spectroscopy(EIS),in terms of efficiency and robustness.To address the challenges,this paper proposes an improved version of DCIR,named pulse impedance technique(PIT),for rapid battery capacity estimation with more robustness.First,PIT is carried out based on the transient current excitation and dynamic voltage measurement using the high sampling frequency,in which the coherence analysis is used to guide the selection of a reliable frequency band.The battery impedance can be extracted in a wide range of frequency bands compared to the traditional DCIR method,which obtains more information on the battery capacity evaluation.Second,various statistical variables are used to extract aging features,and Pearson correlation analysis is applied to determine the highly correlated features.Then a linear regression model is developed to map the relationship between extracted features and battery capacity.To validate the performance of the proposed method,the experimental system is designed to conduct comparative studies between PIT and EIS based on the two 18650 batteries connected in series.The results reveal that the proposed PIT can provide comparative indicators to EIS,which contributes higher estimation accuracy of the proposed PIT method than EIS technology with lower time and cost.展开更多
A sinusoidal voltage wave generator is proposed based on the use of micro-processor digital signals with programmable duty-cycles, with application to real-time Electrical Cell-substrate Impedance Spectroscopy (ECIS) ...A sinusoidal voltage wave generator is proposed based on the use of micro-processor digital signals with programmable duty-cycles, with application to real-time Electrical Cell-substrate Impedance Spectroscopy (ECIS) assays in cell cultures. The working principle relies on the time convolution of the programmed microcontroller (μC) digital signals. The expected frequency is easily tuned on the bio-impedance spectroscopy range [100 Hz, 1 MHz] thanks to the μC clock frequency selection. This system has been simulated and tested on the 8 bits μC Arduino<sup>TM </sup>Uno with ATmega328 version. Results obtained prove that only three digital signals are required to fit the general specification in ECIS experiments, below 1% THD accuracy, and show the appropriateness of the system for the real-time monitoring of this type of biological experiments.展开更多
The corrosion inhibition for carbon steel in circulating cooling water by modified lignosulphonate has been investigated using electrochemical impedance spectroscopy technique. Results show that the inhibition efficie...The corrosion inhibition for carbon steel in circulating cooling water by modified lignosulphonate has been investigated using electrochemical impedance spectroscopy technique. Results show that the inhibition efficiency of modified lignosulphonate GCL2 is a great improvement on that of lignosulphonate. The maximum inhibition efficiency of GCL2 reaches 99.21% at the concentration of 400mg·L^-1 at 303K. The corrosion inhibition of GCL2 is attributed to forming adsorption film on the metal surface for the electrochemical impedance spectroscopy in GCL2 solution shows more than one time-constant.Moreover,results also indicate that it is more efficient in stirring solution than in still solution for GCL2 because the constant of adsorption in stirring solution is much larger than that in still solution. The adsorption of inhibitor GCL2 follows Langmuir's adsorption isotherm.展开更多
The electrochemical characteristics of 1Cr18Ni9Ti in sulphate-reducing bacteria (SRB) solutions and the biofilm of SRB on the surface of the 1Cr18Ni9Ti electrode were studied by electrochemical, microbiological, and...The electrochemical characteristics of 1Cr18Ni9Ti in sulphate-reducing bacteria (SRB) solutions and the biofilm of SRB on the surface of the 1Cr18Ni9Ti electrode were studied by electrochemical, microbiological, and surface analysis methods. Electrochemical impedance spectroscopy (EIS) of 1Cr18Ni9Ti was measured in the solutions with and without SRB at the culture time of 2, 4, 8 d, respectively. The measurement used two test methods, the nonimmersion electrode method and the immersion electrode method. It was found that the polarization resistance (Rp) of 1Cr18Ni9Ti in the solutions without SRB is the greatest for each test method. When using the nonimmersion electrode method, Rp shifts negatively at first and then positively, and the time constant is only one. Although using the immersion electrode method, the Rp shifts positively at first and then negatively, and the time constant also changes when the biofilm forms. The biofilm observed through SEM is with pores. It was demonstrated that SRB has accelerated corrosion action on 1Cr18Ni9Ti. The protection effect of the biofilm on the electrode depends on the compact degree of the film.展开更多
A microfabricated electrical impedance spectroscopy (EIS) chip with microelectrodes was developed.The substrate and the electrodes of the chip were made of glass and gold,respectively.The experimental results demonstr...A microfabricated electrical impedance spectroscopy (EIS) chip with microelectrodes was developed.The substrate and the electrodes of the chip were made of glass and gold,respectively.The experimental results demonstrated that the EIS-chip could distinguish different solutions (physiological saline,culture medium,living cell suspension etc.) by scanning from 10Hz to 45kHz.A 6-element circuit model was used for fitting the real part and the imaginary part admittance curves of the living cell suspension.An actual circuit was also built and tested to verify the 6-element circuit model proposed.The micro-EIS chip has several advantages including the use of small sample volumes,high resolution and ease of operation.It shows good application prospects in the areas of cellular electrophysioiogy,drug screening and bio-sensors etc.展开更多
The exfoliation corrosion susceptibility and electrochemical impedance spectrosc opy(EIS) of rolled and peak-aged 8090 Al-Li alloys in EXCO solution were studi ed,and the EIS after exfoliation was simulated. Once exfo...The exfoliation corrosion susceptibility and electrochemical impedance spectrosc opy(EIS) of rolled and peak-aged 8090 Al-Li alloys in EXCO solution were studi ed,and the EIS after exfoliation was simulated. Once exfoliation occurs,two ca pacitive arcs appear in the EIS at high-mediate frequency and mediate-low freq uency respectively. The exfoliation-attacked alloy surface consists of two part s,an original flat alloy surface and a new inter-face exposed to EXCO solution due to the exfoliation. The capacitance corresponding to the new exfoliation in ter-face increases approximately linearly with time at early exfoliation stage,due to the enlargement of the new inter-face. Then it maintains stable,due to the corrosion product covering on the new inter-face. The exfoliation suscepti bility can be judged through the average slope of the capacitance vs time curve of the early exfoliation stage. This average slope of the rolled 8090 alloy is m uch higher than that of the peak-aged 8090 alloy,accordingly the rolled 8090 a lloy is more susceptible to exfoliation than the peak-aged 8090 alloy.展开更多
The exfoliation morphologies and electrochemical impedance spectroscopy (EIS) features of as received rolled AA8090 Al Li alloy in EXCO solution were studied. The EIS was simulated using an equivalent circuit. The res...The exfoliation morphologies and electrochemical impedance spectroscopy (EIS) features of as received rolled AA8090 Al Li alloy in EXCO solution were studied. The EIS was simulated using an equivalent circuit. The results show that once the exfoliation occurs, the EIS is composed of two capacitive arcs at high frequency and mediate low frequency; among them, the capacitance corresponding to high frequency ( C 1) is originated from original flat alloy surface, while the capacitance corresponding to mediate low frequency ( C 2) from new interface exposed to EXCO solution due to the exfoliation and the ratio of C 2 to C 1 increases with exfoliation degree. It is advanced that the exfoliation degree can be quantitatively judged through this ratio.展开更多
One-year-old potted clone plants of four willow species (Salix matsudana alba, S. babylonica, S. psam- rnophila and S. cheilophila) were cultivated and irrigated with saline solutions of different concentrations, w...One-year-old potted clone plants of four willow species (Salix matsudana alba, S. babylonica, S. psam- rnophila and S. cheilophila) were cultivated and irrigated with saline solutions of different concentrations, while their elec- Lrical impedance spectroscopy (EIS) parameters and other physical parameters were monitored. The results indicate i) that under salt stress, height and basal diameter of all species are inhibited, and ii) that relative conductivity of cellular exudates increases while intracellular resistance (r~) and extracelluar resistance (r) drop. Both r, and r were positively correlated with height growth and basal diameter while they were significantly and negatively correlated with electric conductivity. The concentration of Na in the shoots of willows was negatively correlated with both r and re, whereas the concentration of K in the shoots was positively correlated with both r, and r. Hence, electrical impedance spectroscopy is a reliable tool for evaluating the capacity of willow species for tolerance to saline soils, with r as the most accurate pa- rameter.展开更多
Polycrystalline sample of Ba5HoTi3V7O30 was prepared using solid-state reaction technique. X-ray structural analysis indicated a single-phase formation with orthorhombic structure. Microstructural study by SEM showed ...Polycrystalline sample of Ba5HoTi3V7O30 was prepared using solid-state reaction technique. X-ray structural analysis indicated a single-phase formation with orthorhombic structure. Microstructural study by SEM showed non-uniform distribution of grains over the surface of the sample. Impedance and modulus spectroscopy studies were carried out, as functions of frequency (42 Hz - 5 MHz) and temperature (RT-773K). The Nyquist plots clearly showed the presence of both bulk and grain boundary effect in the compound. Electrical phenomena in the material can appropriately be modeled in terms of an equivalent circuit with R, C and CPE in parallel. The fitting procedure used here allows us to determine the value of R and C with good precision. Here R2 and R3 correspond to the resistance contributed from the grain boundary and bulk, respectively. C1 and C2 correspond to the capacitance contributed from the grain boundary and bulk, respectively. The real part of electrical modulus shows that the material is highly capacitive. The asymmetric peak of the imaginary part of electric modulus M″, predicts a non Debye type relaxation. The activation energy of the compound (calculated both from impedance and modulus spectrum) is same, and hence the relaxation process may be attributed to the same type of charge carriers.展开更多
A part of the Earth's surface has been formed by the action of running water during geomorphological development. The flow of water is one of the ways of how particles can be eroded, transported and accumulated. If e...A part of the Earth's surface has been formed by the action of running water during geomorphological development. The flow of water is one of the ways of how particles can be eroded, transported and accumulated. If endogenous processes do not work, the surface of the continents would lower to the level close to the ocean surface and the relief would have almost no ruggedness. Recently, there have been talks about the relative classification of deviation of the present state from the "original" or "natural" one caused by anthropogeneous effects. The activity of man can manifest itself by pollution, the excessive use of water, a change in the flow regime, and the like. Research into the morphology of the river bottom and the bottom of settling tanks or dam reservoirs is systematically carried out in selected streams and reservoirs by the long-term sampling of bottom sediments. The knowledge of the sediment layer is also important. The EIS method, which was used for measuring, is new for the aforementioned applications. Possibilities of EIS method with new apparatus using for this application were tested in laboratory and in situ. On the basis of interpretation of the electrical conductivity data, a grid of depth data was acquired. These data are characterized by anomalously high and low "spots" and show morphological changes in the studied area.展开更多
The present study aims at understanding the electrochemical impedance and biocorrosion characteristics of AZ91 Mg-alloy in Ringer’s solution.As-cast AZ91 Mg-alloy was subjected to T4 heat treatment in a way to homoge...The present study aims at understanding the electrochemical impedance and biocorrosion characteristics of AZ91 Mg-alloy in Ringer’s solution.As-cast AZ91 Mg-alloy was subjected to T4 heat treatment in a way to homogenize its microstructure by dissolving most of theβ-Mg 17 Al 12 phase at the vicinity of grain boundaries.The electrochemical impedance and biocorrosion performances of these two different microstructures(as-cast and T4 heat treated AZ91 Mg-alloys)in Ringer solution were evaluated by electrochemical impendence spectroscopy,potentiodynamic polarization and weight loss method.EIS spectra showed that both microstructures exhibit similar dynamic response as a function of the immersion time;however,the value of impedance and maximum phase angle are about 50%higher in as-cast AZ91 Mg-alloy as compared to that of homogenized AZ91 Mg-alloy.Weight loss measurement indicated that corrosion resistance of as-cast AZ91 was significantly better than that of homogenized AZ91.Microstructural and XRD analysis revealed that as-cast AZ91 contains a passive film of MgCO_(3)and CaCO_(3)precipitates with near spherical morphologies,whereas homogenized AZ91 comprised mainly unstable Mg(OH)_(2)film featured by irregular plate-like morphologies.展开更多
Degradation behavior is the main technical problem in the field of commercial application of lithiumion batteries. According to the characteristics of voltage, discharge capacity and inner resistance during the charge...Degradation behavior is the main technical problem in the field of commercial application of lithiumion batteries. According to the characteristics of voltage, discharge capacity and inner resistance during the charge/discharge process of commercial lithium-ion batteries of mobile telephone, degradation analysis and related mechanisms are put forward and discussed in the paper. The impedance spectra of prismatic commercial lithium-ion batteries are measured at various state of charge after different charge/discharge cycles. The incastared impedance spectra are discussed with a proposed equivalent circuit. Results indicated that the structure change of electrode materials or swell and shrink of crystal lattice, decompose of electrolyte, dissolution of active materials and solid electrolyte interphase film formation are the main reasons leading to the capacity degradation.展开更多
As a fundamental study on recovery of valuable metals from nonferrous metallurgical slags,electrical conductivity values of MO(MO=FeO,NiO)-containing CaO-MgO-SiO2-Al2O3 slag with a low basicity were measured at diff...As a fundamental study on recovery of valuable metals from nonferrous metallurgical slags,electrical conductivity values of MO(MO=FeO,NiO)-containing CaO-MgO-SiO2-Al2O3 slag with a low basicity were measured at different temperatures using AC impedance spectroscopy.The result shows that the electrical conductivity increased from 1.4 S/m to 14.4 S/m with the increase of the temperature from 1 573 to 1 773 K and the content of MO which is less than 12% under the constant mass ratio of (CaO+MgO) to (SiO2+Al2O3) of 0.47.Moreover,the increase magnitude of the electrical conductivity was also promoted with the increase of the content of MO.The electrical conductivity of FeO-containing slags was close to that of NiO-containing slags when the content was less than 8%;however,it was obviously larger than that of NiO-containing slags when the content was 12%.The activation energy of the electrical conductivity decreased with the increase of MO content.展开更多
基金Projects(5120833351078253)supported by the National Natural Science Foundation of China+4 种基金Projects(2014011036-12014131019TYUT2014YQ017OIT2015)supported by the Natural Science Foundation of Shanxi ProvinceChina
文摘Based on three different kinds of conductive paths in microstructure of soil and theory of electrochemical impedance spectroscopy(EIS), an integrated equivalent circuit model and impedance formula for soils were proposed, which contain 6 meaningful resistance and reactance parameters. Considering the conductive properties of soils and dispersion effects, mathematical equations for impedance under various circuit models were deduced and studied. The mathematical expression presents two semicircles for theoretical EIS Nyquist spectrum, in which the center of one semicircle is degraded to simply the equivalent model. Based on the measured parameters of EIS Nyquist spectrum, meaningful soil parameters can easily be determined. Additionally, EIS was used to investigate the soil properties with different water contents along with the mathematical relationships and mechanism between the physical parameters and water content. Magnitude of the impedance decreases with the increase of testing frequency and water content for Bode graphs. The proposed model would help us to better understand the soil microstructure and properties and offer more reasonable explanations for EIS spectra.
基金support from the China Scholarship Council(Grant No.202108890044).
文摘With the dramatic increase in electric vehicles(EVs)globally,the demand for lithium-ion batteries has grown dramatically,resulting in many batteries being retired in the future.Developing a rapid and robust capacity estimation method is a challenging work to recognize the battery aging level on service and provide regroup strategy of the retied batteries in secondary use.There are still limitations on the current rapid battery capacity estimation methods,such as direct current internal resistance(DCIR)and electrochemical impedance spectroscopy(EIS),in terms of efficiency and robustness.To address the challenges,this paper proposes an improved version of DCIR,named pulse impedance technique(PIT),for rapid battery capacity estimation with more robustness.First,PIT is carried out based on the transient current excitation and dynamic voltage measurement using the high sampling frequency,in which the coherence analysis is used to guide the selection of a reliable frequency band.The battery impedance can be extracted in a wide range of frequency bands compared to the traditional DCIR method,which obtains more information on the battery capacity evaluation.Second,various statistical variables are used to extract aging features,and Pearson correlation analysis is applied to determine the highly correlated features.Then a linear regression model is developed to map the relationship between extracted features and battery capacity.To validate the performance of the proposed method,the experimental system is designed to conduct comparative studies between PIT and EIS based on the two 18650 batteries connected in series.The results reveal that the proposed PIT can provide comparative indicators to EIS,which contributes higher estimation accuracy of the proposed PIT method than EIS technology with lower time and cost.
文摘A sinusoidal voltage wave generator is proposed based on the use of micro-processor digital signals with programmable duty-cycles, with application to real-time Electrical Cell-substrate Impedance Spectroscopy (ECIS) assays in cell cultures. The working principle relies on the time convolution of the programmed microcontroller (μC) digital signals. The expected frequency is easily tuned on the bio-impedance spectroscopy range [100 Hz, 1 MHz] thanks to the μC clock frequency selection. This system has been simulated and tested on the 8 bits μC Arduino<sup>TM </sup>Uno with ATmega328 version. Results obtained prove that only three digital signals are required to fit the general specification in ECIS experiments, below 1% THD accuracy, and show the appropriateness of the system for the real-time monitoring of this type of biological experiments.
基金supported by the National Natural Science Foundation of China(No.20276024)the Guangdong Provincial Laboratory of Green Chemical Technology
文摘The corrosion inhibition for carbon steel in circulating cooling water by modified lignosulphonate has been investigated using electrochemical impedance spectroscopy technique. Results show that the inhibition efficiency of modified lignosulphonate GCL2 is a great improvement on that of lignosulphonate. The maximum inhibition efficiency of GCL2 reaches 99.21% at the concentration of 400mg·L^-1 at 303K. The corrosion inhibition of GCL2 is attributed to forming adsorption film on the metal surface for the electrochemical impedance spectroscopy in GCL2 solution shows more than one time-constant.Moreover,results also indicate that it is more efficient in stirring solution than in still solution for GCL2 because the constant of adsorption in stirring solution is much larger than that in still solution. The adsorption of inhibitor GCL2 follows Langmuir's adsorption isotherm.
文摘The electrochemical characteristics of 1Cr18Ni9Ti in sulphate-reducing bacteria (SRB) solutions and the biofilm of SRB on the surface of the 1Cr18Ni9Ti electrode were studied by electrochemical, microbiological, and surface analysis methods. Electrochemical impedance spectroscopy (EIS) of 1Cr18Ni9Ti was measured in the solutions with and without SRB at the culture time of 2, 4, 8 d, respectively. The measurement used two test methods, the nonimmersion electrode method and the immersion electrode method. It was found that the polarization resistance (Rp) of 1Cr18Ni9Ti in the solutions without SRB is the greatest for each test method. When using the nonimmersion electrode method, Rp shifts negatively at first and then positively, and the time constant is only one. Although using the immersion electrode method, the Rp shifts positively at first and then negatively, and the time constant also changes when the biofilm forms. The biofilm observed through SEM is with pores. It was demonstrated that SRB has accelerated corrosion action on 1Cr18Ni9Ti. The protection effect of the biofilm on the electrode depends on the compact degree of the film.
文摘A microfabricated electrical impedance spectroscopy (EIS) chip with microelectrodes was developed.The substrate and the electrodes of the chip were made of glass and gold,respectively.The experimental results demonstrated that the EIS-chip could distinguish different solutions (physiological saline,culture medium,living cell suspension etc.) by scanning from 10Hz to 45kHz.A 6-element circuit model was used for fitting the real part and the imaginary part admittance curves of the living cell suspension.An actual circuit was also built and tested to verify the 6-element circuit model proposed.The micro-EIS chip has several advantages including the use of small sample volumes,high resolution and ease of operation.It shows good application prospects in the areas of cellular electrophysioiogy,drug screening and bio-sensors etc.
文摘The exfoliation corrosion susceptibility and electrochemical impedance spectrosc opy(EIS) of rolled and peak-aged 8090 Al-Li alloys in EXCO solution were studi ed,and the EIS after exfoliation was simulated. Once exfoliation occurs,two ca pacitive arcs appear in the EIS at high-mediate frequency and mediate-low freq uency respectively. The exfoliation-attacked alloy surface consists of two part s,an original flat alloy surface and a new inter-face exposed to EXCO solution due to the exfoliation. The capacitance corresponding to the new exfoliation in ter-face increases approximately linearly with time at early exfoliation stage,due to the enlargement of the new inter-face. Then it maintains stable,due to the corrosion product covering on the new inter-face. The exfoliation suscepti bility can be judged through the average slope of the capacitance vs time curve of the early exfoliation stage. This average slope of the rolled 8090 alloy is m uch higher than that of the peak-aged 8090 alloy,accordingly the rolled 8090 a lloy is more susceptible to exfoliation than the peak-aged 8090 alloy.
文摘The exfoliation morphologies and electrochemical impedance spectroscopy (EIS) features of as received rolled AA8090 Al Li alloy in EXCO solution were studied. The EIS was simulated using an equivalent circuit. The results show that once the exfoliation occurs, the EIS is composed of two capacitive arcs at high frequency and mediate low frequency; among them, the capacitance corresponding to high frequency ( C 1) is originated from original flat alloy surface, while the capacitance corresponding to mediate low frequency ( C 2) from new interface exposed to EXCO solution due to the exfoliation and the ratio of C 2 to C 1 increases with exfoliation degree. It is advanced that the exfoliation degree can be quantitatively judged through this ratio.
基金funded by the 948 Program of the State Forestry Administration of China (No. 2011-4-08)the Hebei Natural Science Foundation of China (No. C2011204107)
文摘One-year-old potted clone plants of four willow species (Salix matsudana alba, S. babylonica, S. psam- rnophila and S. cheilophila) were cultivated and irrigated with saline solutions of different concentrations, while their elec- Lrical impedance spectroscopy (EIS) parameters and other physical parameters were monitored. The results indicate i) that under salt stress, height and basal diameter of all species are inhibited, and ii) that relative conductivity of cellular exudates increases while intracellular resistance (r~) and extracelluar resistance (r) drop. Both r, and r were positively correlated with height growth and basal diameter while they were significantly and negatively correlated with electric conductivity. The concentration of Na in the shoots of willows was negatively correlated with both r and re, whereas the concentration of K in the shoots was positively correlated with both r, and r. Hence, electrical impedance spectroscopy is a reliable tool for evaluating the capacity of willow species for tolerance to saline soils, with r as the most accurate pa- rameter.
文摘Polycrystalline sample of Ba5HoTi3V7O30 was prepared using solid-state reaction technique. X-ray structural analysis indicated a single-phase formation with orthorhombic structure. Microstructural study by SEM showed non-uniform distribution of grains over the surface of the sample. Impedance and modulus spectroscopy studies were carried out, as functions of frequency (42 Hz - 5 MHz) and temperature (RT-773K). The Nyquist plots clearly showed the presence of both bulk and grain boundary effect in the compound. Electrical phenomena in the material can appropriately be modeled in terms of an equivalent circuit with R, C and CPE in parallel. The fitting procedure used here allows us to determine the value of R and C with good precision. Here R2 and R3 correspond to the resistance contributed from the grain boundary and bulk, respectively. C1 and C2 correspond to the capacitance contributed from the grain boundary and bulk, respectively. The real part of electrical modulus shows that the material is highly capacitive. The asymmetric peak of the imaginary part of electric modulus M″, predicts a non Debye type relaxation. The activation energy of the compound (calculated both from impedance and modulus spectrum) is same, and hence the relaxation process may be attributed to the same type of charge carriers.
文摘A part of the Earth's surface has been formed by the action of running water during geomorphological development. The flow of water is one of the ways of how particles can be eroded, transported and accumulated. If endogenous processes do not work, the surface of the continents would lower to the level close to the ocean surface and the relief would have almost no ruggedness. Recently, there have been talks about the relative classification of deviation of the present state from the "original" or "natural" one caused by anthropogeneous effects. The activity of man can manifest itself by pollution, the excessive use of water, a change in the flow regime, and the like. Research into the morphology of the river bottom and the bottom of settling tanks or dam reservoirs is systematically carried out in selected streams and reservoirs by the long-term sampling of bottom sediments. The knowledge of the sediment layer is also important. The EIS method, which was used for measuring, is new for the aforementioned applications. Possibilities of EIS method with new apparatus using for this application were tested in laboratory and in situ. On the basis of interpretation of the electrical conductivity data, a grid of depth data was acquired. These data are characterized by anomalously high and low "spots" and show morphological changes in the studied area.
文摘The present study aims at understanding the electrochemical impedance and biocorrosion characteristics of AZ91 Mg-alloy in Ringer’s solution.As-cast AZ91 Mg-alloy was subjected to T4 heat treatment in a way to homogenize its microstructure by dissolving most of theβ-Mg 17 Al 12 phase at the vicinity of grain boundaries.The electrochemical impedance and biocorrosion performances of these two different microstructures(as-cast and T4 heat treated AZ91 Mg-alloys)in Ringer solution were evaluated by electrochemical impendence spectroscopy,potentiodynamic polarization and weight loss method.EIS spectra showed that both microstructures exhibit similar dynamic response as a function of the immersion time;however,the value of impedance and maximum phase angle are about 50%higher in as-cast AZ91 Mg-alloy as compared to that of homogenized AZ91 Mg-alloy.Weight loss measurement indicated that corrosion resistance of as-cast AZ91 was significantly better than that of homogenized AZ91.Microstructural and XRD analysis revealed that as-cast AZ91 contains a passive film of MgCO_(3)and CaCO_(3)precipitates with near spherical morphologies,whereas homogenized AZ91 comprised mainly unstable Mg(OH)_(2)film featured by irregular plate-like morphologies.
基金"973"Project (2002CB211800)Teaching and Research Fund of Beijing Institute of Technology(20070542008)
文摘Degradation behavior is the main technical problem in the field of commercial application of lithiumion batteries. According to the characteristics of voltage, discharge capacity and inner resistance during the charge/discharge process of commercial lithium-ion batteries of mobile telephone, degradation analysis and related mechanisms are put forward and discussed in the paper. The impedance spectra of prismatic commercial lithium-ion batteries are measured at various state of charge after different charge/discharge cycles. The incastared impedance spectra are discussed with a proposed equivalent circuit. Results indicated that the structure change of electrode materials or swell and shrink of crystal lattice, decompose of electrolyte, dissolution of active materials and solid electrolyte interphase film formation are the main reasons leading to the capacity degradation.
基金Project(50574011) supported by the National Natural Science Foundation of China
文摘As a fundamental study on recovery of valuable metals from nonferrous metallurgical slags,electrical conductivity values of MO(MO=FeO,NiO)-containing CaO-MgO-SiO2-Al2O3 slag with a low basicity were measured at different temperatures using AC impedance spectroscopy.The result shows that the electrical conductivity increased from 1.4 S/m to 14.4 S/m with the increase of the temperature from 1 573 to 1 773 K and the content of MO which is less than 12% under the constant mass ratio of (CaO+MgO) to (SiO2+Al2O3) of 0.47.Moreover,the increase magnitude of the electrical conductivity was also promoted with the increase of the content of MO.The electrical conductivity of FeO-containing slags was close to that of NiO-containing slags when the content was less than 8%;however,it was obviously larger than that of NiO-containing slags when the content was 12%.The activation energy of the electrical conductivity decreased with the increase of MO content.