Electric furnace short process steelmaking is one of the most important steelmaking methods in the world today, and the waste heat recovery potential of electric furnace flue gas is huge.?The research on the recovery ...Electric furnace short process steelmaking is one of the most important steelmaking methods in the world today, and the waste heat recovery potential of electric furnace flue gas is huge.?The research on the recovery of electric furnace flue gas waste heat is of great significance. In order to make better use of this part of the heat,?in this paper, a compound cycle of nitrogen Brayton cycle as a first-order cycle and toluene transcritical Rankine cycle as a second-order cycle is proposed to recover waste heat from furnace flue gas in steelmaking process for power generation. A mathematical model was established with the net output power as the objective function and the initial expansion pressure, the final expansion pressure, the initial expansion temperature and the initial pressure of the second cycle as the independent variables. The effect of multivariate on the net output power of the waste heat power generation cycle is studied, and then, the optimal parameters of the compound cycle are determined. The results show that under the general electric furnace steelmaking process, the power generation efficiency of this new cycle can be increased by 21.02% compared with the conventional cycle.展开更多
Generation of electrical energy from imported fossil fuels is subject to the price fluctuations of the global marketplace and, thus, constitutes a major expense in its distribution to the end users. Even with the curr...Generation of electrical energy from imported fossil fuels is subject to the price fluctuations of the global marketplace and, thus, constitutes a major expense in its distribution to the end users. Even with the current low prices of fuel, residents and businesses in the United States pay a significant price for their utilities, if not higher than most other countries in the world. Emissions from the evaporation and combustion of these traditional fossil fuels contribute to a range of environmental and health problems, causing poor air quality, and emitting greenhouse gases that contribute to global warming. Alternative fuel created from domestic sources has been proposed as a solution to these problems and much alternative energy are being developed based on solar, wind, biomass, hydropower, fuel cell, geothermal, etc. A new alternative hydrocarbon fuel which is produced from waste plastics can be used with compatble power plants and generators appliances to produce electricity that can be supplied into homes, businesses, power grids and other sectors.展开更多
Two novel thermal cycles based on Brayton cycle and Rankine cycle are proposed, respectively, which integrate the recovery of low-level waste heat and Liquefied Nature Gas (LNG) cold energy utilization for power gen...Two novel thermal cycles based on Brayton cycle and Rankine cycle are proposed, respectively, which integrate the recovery of low-level waste heat and Liquefied Nature Gas (LNG) cold energy utilization for power generation. Cascade utilization of energy is realized in the two thermal cycles, where low-level waste heat,low-temperature exergy and pressure exergy of LNG are utilized efficiently through the system synthesis. The simulations are carried out using the commercial Aspen Plus 10.2, and the results are analyzed. Compared with the conventional Brayton cycle and Rankine cycle, the two novel cycles bring 60.94% and 60% in exergy efficiency, respectively and 53.08% and 52.31% in thermal efficiency, respectively.展开更多
This study work related with floating of an idea about conversion of reclaimed thermal energy from domestic cooking system into the electrical power. There were different techniques in use worldwide for harnessing the...This study work related with floating of an idea about conversion of reclaimed thermal energy from domestic cooking system into the electrical power. There were different techniques in use worldwide for harnessing the energy into the appropriate useful work and also to create efficient system for the energy conversion process. The ignorance in this regard might be due to the reason that this wastage did not cost too much for a single home on per day or per month basis, but it could be a ample amount of cost if integrated this loss for a whole city or on yearly bases for a single home. The idea in this work depended upon the recovery of waste heat from Pressure Cookers used in the houses for the domestic cooking purposes, and optimized the reclaimed thermal energy for the conversion into electric power. This research work related with losses of energy discussed and analyzed on the basis of thermo dynamically regarding (a) the wastage of thermal energy escaped through the system due to the spreading of exhaust vapors and taking away significant amount of thermal energy;(b) losses of enthalpy through the dissipate steam;(c) heat losses in the tubing from the Pressure Cooker to the turbine;(d) electric power produces from the system. In this work, new methods were advised, in order to reduce the losses of thermal energy from the system. It would open the venue for researchers to promote this new idea in near future.展开更多
In this study,a model of combined cooling,heating and power system with municipal solid waste(MSW)and liquefied natural gas(LNG)as energy sources was proposed and developed based on the energy demand of a large commun...In this study,a model of combined cooling,heating and power system with municipal solid waste(MSW)and liquefied natural gas(LNG)as energy sources was proposed and developed based on the energy demand of a large community,andMSW was classified and utilized.The systemoperated by determining power by heating load,and measures were taken to reduce operating costs by purchasing and selling LNG,natural gas(NG),cooling,heating,and power.Based on this system model,three operation strategies were proposed based on whether MSW was classified and the length of kitchen waste fermentation time,and each strategy was simulated hourly throughout the year.The results showed that the strategy of MSW classified and centralized fermentation of kitchen waste in summer(i.e.,strategy 3)required the least total amount of LNG for the whole year,which was 47701.77 t.In terms of total annual cost expenditure,strategy 3 had the best overall economy,with the lowest total annual expenditure of 2.7730×108 RMB at LNG and NG unit prices of 4 and 4.2 RMB/kg,respectively.The lower heating value of biogas produced by fermentation of kitchen waste from MSW being classified was higher than that of MSW before being classified,so the average annual thermal economy of the operating strategy of MSW being classified was better than that of MSW not being classified.Among the strategies in which MSW was classified and utilized,strategy 3 could better meet the load demand of users in the corresponding season,and thus this strategy had better thermal economy than the strategy of year-round fermentation of kitchen waste(i.e.,strategy 2).The hourly analysis data showed that the net electrical efficiency of the system varies in the same trend as the cooling,heating and power loads in all seasons,while the relationship between the energy utilization efficiency and load varied from season to season.This study can provide guidance for the practical application of MSW being classified in the system.展开更多
The customarily discarded exhaust from the fossil fuel-based power plants of the off-grid mines holds the thermal potential to fulfill the heating requirement of the underground operation.This present research fills i...The customarily discarded exhaust from the fossil fuel-based power plants of the off-grid mines holds the thermal potential to fulfill the heating requirement of the underground operation.This present research fills in an important research gap by investigating the coupling effect between a diesel exhaust heat recovery and an intake air heating system employed in a remote mine.An integrative approach comprising analytical,numerical,and experimental assessment has been adapted.The novel analytical model developed here establishes the reliability of the proposed mine heating system by providing comparative analysis between a coupled and a decoupled system.The effect of working fluid variation has been examined by the numerical analysis and the possible improvement has been identified.Experimental investigations present a demonstration of the successful lab-scale implementation of the concept and validate the numerical and analytical models developed.Successful deployment of the fully coupled mine heating system proposed here will assist the mining industry on its journey towards energy-efficient,and sustainable mining practices through nearly 70%reduction in fossil fuel consumption for heating intentions.展开更多
The study takes motivation from provincial and national issues regarding waste management and electricity production in Canada.Most sources include previous research relating pyrolysis’applications in different parts...The study takes motivation from provincial and national issues regarding waste management and electricity production in Canada.Most sources include previous research relating pyrolysis’applications in different parts of the world.The research included 2-3 weeks of extensive reading of previous research and understanding the theory relating polymers.Research has been conducted to understand why polymers have the properties that they do.Thorough analysis about the chemical reactions relating polymers on a small and large scale is conducted.More research was conducted relating to socio-economic conditions of Canada and Singapore for application purposes.Findings of the research point to an addition the Canadian government can uphold i.e.,build more plastic pyrolysis plants in different regions for waste management.Our findings also suggest that the short term spending on such projects can yield long term benefits.This research is important because it will solve Canada’s non-recyclable waste problems,it will help bring in a new source of electricity and it will help increase the budget of municipalities in the long run.This paper is not just informative on polymers,but also will help readers understand issues regarding Canadian waste management and propose possible solutions.展开更多
The diffusion of chemical species down concentration gradient is a ubiquitous phenomenon that releases Gibbs free energy.Nanofluidic materials have shown great promise in harvesting the energy from ionic diffusion via...The diffusion of chemical species down concentration gradient is a ubiquitous phenomenon that releases Gibbs free energy.Nanofluidic materials have shown great promise in harvesting the energy from ionic diffusion via the reverse electrodialysis process.In principle,any chemicals that can be converted to ions can be used for nanofluidic power generation.In this work,we demonstrate the power generation from the diffusion of CO_(2) into air using nanofluidic cellulose membranes.By dissolving CO_(2) in water,a power density of 87 mW/m^(2) can be achieved.Using monoethanolamine solutions to dissolve CO_(2),the power density can be increased to 2.6 W/m^(2).We further demonstrate that the waste heat released in industrial and carbon capture processes,can be simultaneously harvested with our nanofluidic membranes,increasing the power density up to 16 W/m^(2) under a temperature difference of 30°C.Therefore,our work should expand the application scope of nanofluidic osmotic power generation and contribute to carbon utilization and capture technologies.展开更多
构建综合能源系统(integrated energy system,IES),并对燃煤机组进行低碳化改造,同时辅以广义需求响应资源,是实现碳达峰、碳中和的重要途径。该文提出了考虑广义电热需求响应的源-荷协调IES低碳经济调度模型,结合有机朗肯循环余热发电...构建综合能源系统(integrated energy system,IES),并对燃煤机组进行低碳化改造,同时辅以广义需求响应资源,是实现碳达峰、碳中和的重要途径。该文提出了考虑广义电热需求响应的源-荷协调IES低碳经济调度模型,结合有机朗肯循环余热发电和电热综合需求响应能增加源荷两侧灵活性的特点,改善了火电机组低碳化改造过程中存在的峰荷时段碳捕集水平不足问题。首先,在IES中引入余热回收装置,解耦热电联产(combined heat and power,CHP)机组“以热定电”约束,灵活CHP机组电出力。其次,考虑基于分时电价和供热舒适度模糊性的电热综合需求响应,与余热回收的热电负荷调节效应相协同,构建广义电热需求响应模型,并挖掘其源-荷协调低碳调度机理。最后,以系统运行总成本最优为目标制定机组出力方案,并采用CPLEX求解器对所构建模型进行求解。仿真算例表明:该方法有效提高了碳捕集电厂捕碳水平,兼顾了系统的经济性与低碳性,可为含碳捕集电厂的IES低碳经济调度提供参考。展开更多
文摘Electric furnace short process steelmaking is one of the most important steelmaking methods in the world today, and the waste heat recovery potential of electric furnace flue gas is huge.?The research on the recovery of electric furnace flue gas waste heat is of great significance. In order to make better use of this part of the heat,?in this paper, a compound cycle of nitrogen Brayton cycle as a first-order cycle and toluene transcritical Rankine cycle as a second-order cycle is proposed to recover waste heat from furnace flue gas in steelmaking process for power generation. A mathematical model was established with the net output power as the objective function and the initial expansion pressure, the final expansion pressure, the initial expansion temperature and the initial pressure of the second cycle as the independent variables. The effect of multivariate on the net output power of the waste heat power generation cycle is studied, and then, the optimal parameters of the compound cycle are determined. The results show that under the general electric furnace steelmaking process, the power generation efficiency of this new cycle can be increased by 21.02% compared with the conventional cycle.
文摘Generation of electrical energy from imported fossil fuels is subject to the price fluctuations of the global marketplace and, thus, constitutes a major expense in its distribution to the end users. Even with the current low prices of fuel, residents and businesses in the United States pay a significant price for their utilities, if not higher than most other countries in the world. Emissions from the evaporation and combustion of these traditional fossil fuels contribute to a range of environmental and health problems, causing poor air quality, and emitting greenhouse gases that contribute to global warming. Alternative fuel created from domestic sources has been proposed as a solution to these problems and much alternative energy are being developed based on solar, wind, biomass, hydropower, fuel cell, geothermal, etc. A new alternative hydrocarbon fuel which is produced from waste plastics can be used with compatble power plants and generators appliances to produce electricity that can be supplied into homes, businesses, power grids and other sectors.
基金the Science and Technology Foundation of Shaanxi Province (No.2002K08-G9).
文摘Two novel thermal cycles based on Brayton cycle and Rankine cycle are proposed, respectively, which integrate the recovery of low-level waste heat and Liquefied Nature Gas (LNG) cold energy utilization for power generation. Cascade utilization of energy is realized in the two thermal cycles, where low-level waste heat,low-temperature exergy and pressure exergy of LNG are utilized efficiently through the system synthesis. The simulations are carried out using the commercial Aspen Plus 10.2, and the results are analyzed. Compared with the conventional Brayton cycle and Rankine cycle, the two novel cycles bring 60.94% and 60% in exergy efficiency, respectively and 53.08% and 52.31% in thermal efficiency, respectively.
文摘This study work related with floating of an idea about conversion of reclaimed thermal energy from domestic cooking system into the electrical power. There were different techniques in use worldwide for harnessing the energy into the appropriate useful work and also to create efficient system for the energy conversion process. The ignorance in this regard might be due to the reason that this wastage did not cost too much for a single home on per day or per month basis, but it could be a ample amount of cost if integrated this loss for a whole city or on yearly bases for a single home. The idea in this work depended upon the recovery of waste heat from Pressure Cookers used in the houses for the domestic cooking purposes, and optimized the reclaimed thermal energy for the conversion into electric power. This research work related with losses of energy discussed and analyzed on the basis of thermo dynamically regarding (a) the wastage of thermal energy escaped through the system due to the spreading of exhaust vapors and taking away significant amount of thermal energy;(b) losses of enthalpy through the dissipate steam;(c) heat losses in the tubing from the Pressure Cooker to the turbine;(d) electric power produces from the system. In this work, new methods were advised, in order to reduce the losses of thermal energy from the system. It would open the venue for researchers to promote this new idea in near future.
基金support provided by the Nature Science Foundation of Shandong Province(ZR201709180049)the Shandong Key Research and Development Program(2019GSF109023).
文摘In this study,a model of combined cooling,heating and power system with municipal solid waste(MSW)and liquefied natural gas(LNG)as energy sources was proposed and developed based on the energy demand of a large community,andMSW was classified and utilized.The systemoperated by determining power by heating load,and measures were taken to reduce operating costs by purchasing and selling LNG,natural gas(NG),cooling,heating,and power.Based on this system model,three operation strategies were proposed based on whether MSW was classified and the length of kitchen waste fermentation time,and each strategy was simulated hourly throughout the year.The results showed that the strategy of MSW classified and centralized fermentation of kitchen waste in summer(i.e.,strategy 3)required the least total amount of LNG for the whole year,which was 47701.77 t.In terms of total annual cost expenditure,strategy 3 had the best overall economy,with the lowest total annual expenditure of 2.7730×108 RMB at LNG and NG unit prices of 4 and 4.2 RMB/kg,respectively.The lower heating value of biogas produced by fermentation of kitchen waste from MSW being classified was higher than that of MSW before being classified,so the average annual thermal economy of the operating strategy of MSW being classified was better than that of MSW not being classified.Among the strategies in which MSW was classified and utilized,strategy 3 could better meet the load demand of users in the corresponding season,and thus this strategy had better thermal economy than the strategy of year-round fermentation of kitchen waste(i.e.,strategy 2).The hourly analysis data showed that the net electrical efficiency of the system varies in the same trend as the cooling,heating and power loads in all seasons,while the relationship between the energy utilization efficiency and load varied from season to season.This study can provide guidance for the practical application of MSW being classified in the system.
文摘The customarily discarded exhaust from the fossil fuel-based power plants of the off-grid mines holds the thermal potential to fulfill the heating requirement of the underground operation.This present research fills in an important research gap by investigating the coupling effect between a diesel exhaust heat recovery and an intake air heating system employed in a remote mine.An integrative approach comprising analytical,numerical,and experimental assessment has been adapted.The novel analytical model developed here establishes the reliability of the proposed mine heating system by providing comparative analysis between a coupled and a decoupled system.The effect of working fluid variation has been examined by the numerical analysis and the possible improvement has been identified.Experimental investigations present a demonstration of the successful lab-scale implementation of the concept and validate the numerical and analytical models developed.Successful deployment of the fully coupled mine heating system proposed here will assist the mining industry on its journey towards energy-efficient,and sustainable mining practices through nearly 70%reduction in fossil fuel consumption for heating intentions.
文摘The study takes motivation from provincial and national issues regarding waste management and electricity production in Canada.Most sources include previous research relating pyrolysis’applications in different parts of the world.The research included 2-3 weeks of extensive reading of previous research and understanding the theory relating polymers.Research has been conducted to understand why polymers have the properties that they do.Thorough analysis about the chemical reactions relating polymers on a small and large scale is conducted.More research was conducted relating to socio-economic conditions of Canada and Singapore for application purposes.Findings of the research point to an addition the Canadian government can uphold i.e.,build more plastic pyrolysis plants in different regions for waste management.Our findings also suggest that the short term spending on such projects can yield long term benefits.This research is important because it will solve Canada’s non-recyclable waste problems,it will help bring in a new source of electricity and it will help increase the budget of municipalities in the long run.This paper is not just informative on polymers,but also will help readers understand issues regarding Canadian waste management and propose possible solutions.
基金National Natural Science Foundation of China(22272194)Key R&D Projects of Shandong Province(2022CXGC010302)+1 种基金Shandong Provincial Natural Science Foundation(ZR2021YQ12)Shandong Energy Institute(SEI202124).
文摘The diffusion of chemical species down concentration gradient is a ubiquitous phenomenon that releases Gibbs free energy.Nanofluidic materials have shown great promise in harvesting the energy from ionic diffusion via the reverse electrodialysis process.In principle,any chemicals that can be converted to ions can be used for nanofluidic power generation.In this work,we demonstrate the power generation from the diffusion of CO_(2) into air using nanofluidic cellulose membranes.By dissolving CO_(2) in water,a power density of 87 mW/m^(2) can be achieved.Using monoethanolamine solutions to dissolve CO_(2),the power density can be increased to 2.6 W/m^(2).We further demonstrate that the waste heat released in industrial and carbon capture processes,can be simultaneously harvested with our nanofluidic membranes,increasing the power density up to 16 W/m^(2) under a temperature difference of 30°C.Therefore,our work should expand the application scope of nanofluidic osmotic power generation and contribute to carbon utilization and capture technologies.
文摘构建综合能源系统(integrated energy system,IES),并对燃煤机组进行低碳化改造,同时辅以广义需求响应资源,是实现碳达峰、碳中和的重要途径。该文提出了考虑广义电热需求响应的源-荷协调IES低碳经济调度模型,结合有机朗肯循环余热发电和电热综合需求响应能增加源荷两侧灵活性的特点,改善了火电机组低碳化改造过程中存在的峰荷时段碳捕集水平不足问题。首先,在IES中引入余热回收装置,解耦热电联产(combined heat and power,CHP)机组“以热定电”约束,灵活CHP机组电出力。其次,考虑基于分时电价和供热舒适度模糊性的电热综合需求响应,与余热回收的热电负荷调节效应相协同,构建广义电热需求响应模型,并挖掘其源-荷协调低碳调度机理。最后,以系统运行总成本最优为目标制定机组出力方案,并采用CPLEX求解器对所构建模型进行求解。仿真算例表明:该方法有效提高了碳捕集电厂捕碳水平,兼顾了系统的经济性与低碳性,可为含碳捕集电厂的IES低碳经济调度提供参考。