Both Hybrid Electric Vehicles (HEVs) and Electric Vehicles (EVs) need a traction motor and a power in-verter to drive the traction motor. The requirements for the power inverter include high peak power, opti-mum consu...Both Hybrid Electric Vehicles (HEVs) and Electric Vehicles (EVs) need a traction motor and a power in-verter to drive the traction motor. The requirements for the power inverter include high peak power, opti-mum consumption of energy, low output harmonics and inexpensive circuit. In this paper, a new structure of multilevel inverter with reduced number of switches is proposed for electric vehicle applications. It consists of an H-bridge and an inverter in each phase which produces multilevel voltage by switching the dc voltage sources in series. As the number of switches are reduced, both conduction and switching losses will be de-creased, which leads to increase the efficiency of converter. The size and power consumption of driving cir-cuits are also reduced. The proposed three phase inverter can produces more number of voltage levels in the same number of the voltage source and reduced number of switches compared to the conventional inverters. This structure minimizes the total harmonic distortion (THD) of the output voltage waveforms. The structure of proposed multilevel inverter, modulation method, switching losses, THD calculation and simulation re-sults with PSCAD/EMTDC software are shown in this paper.展开更多
Along with the rapid growth in electric vehicle(EV)market,higher power density and more efficient motor drive inverters are required.It is well known that silicon carbide(SiC)has advantages of high temperature,high ef...Along with the rapid growth in electric vehicle(EV)market,higher power density and more efficient motor drive inverters are required.It is well known that silicon carbide(SiC)has advantages of high temperature,high efficiency and high switching frequency.It is believed that the appropriate utilization of these merits can pave the way to ultra-high power density inverters.This paper presents issues about SiC chip’s current-carrying capability enhancement which is crucial for a compact inverter of tens and hundreds of kilowatts.Technical approaches towards ultra-high power density EV inverter including SiC module packaging,dc-link capacitor function analysis and system level integration are discussed.Different PWM algorithms which may improve efficiency and help to reduce the inverter volume are also studied.展开更多
Electrification of vehicles intensifies their cooling demands due to the requirements of maintaining electronics/electrical systems below their maximum temperature threshold.In this paper,passive cooling approaches ba...Electrification of vehicles intensifies their cooling demands due to the requirements of maintaining electronics/electrical systems below their maximum temperature threshold.In this paper,passive cooling approaches based on heat pipes have been considered for the thermal management of electric vehicle(EV)traction systems including battery,inverter,and motor.For the battery,a heat pipe base plate is used to provide high heat removal(180 W per module)and better thermal uniformity(<5°C)for the battery modules in a pack while downsizing the liquid cold plate system.In the case of Inverter,two phase cooling system based on heat pipes was designed to handle hot spots arising from high heat flux(∼100 W/cm2)–for liquid cooling and provide location independence and a dedicated cooling approach-for air cooling.For EV motors,heat pipebased systems are explored for stator and rotor cooling.The paper also provides a glimpse of development on high-performance microchannel-based cold plate technologies based on parallel fins and multi-layer 3D stacked structures.Specifically,this work extends the concept of hybridization of two-phase technology based on heat pipes with single-phase technology,predominately based on liquid cooling,to extend performance,functionalities,and operational regime of cooling solutions for components of EV drive trains.In summary,heat pipes will help to improve and extend the overall reliability,performance,and safety of air and liquid cooling systems in electric vehicles.展开更多
For electric vehicles (EVs),it is necessary to improve endurance mileage by improving the efficiency.There exists a trend towards increasing the system voltage and switching frequency,contributing to improve charging ...For electric vehicles (EVs),it is necessary to improve endurance mileage by improving the efficiency.There exists a trend towards increasing the system voltage and switching frequency,contributing to improve charging speed and power density.However,this trend poses significant challenges for high-voltage and high-frequency motor controllers,which are plagued by increased switching losses and pronounced switching oscillations as consequences of hard switching.The deployment of soft switching technology presents a viable solution to mitigate these issues.This paper reviews the applications of soft switching technologies for three-phase inverters and classifies them based on distinct characteristics.For each type of inverter,the advantages and disadvantages are evaluated.Then,the paper introduces the research progress and control methods of soft switching inverters (SSIs).Moreover,it presents a comparative analysis among the conventional hard switching inverters (HSIs),an active clamping resonant DC link inverter (ACRDCLI) and an auxiliary resonant commuted pole inverter (ARCPI).Finally,the problems and prospects of soft switching technology applied to motor controllers for EVs are put forward.展开更多
The paper deals with the designing of an electric drive system used for hybrid electric vehicles. The driving system is realized with an induction motor and a voltage source inverter. Specifically, the application is ...The paper deals with the designing of an electric drive system used for hybrid electric vehicles. The driving system is realized with an induction motor and a voltage source inverter. Specifically, the application is for a series hybrid vehicle powered by electric storage batteries charged by solar batteries. In the first part of the paper the designing of the electric storage batteries and of the photoelectric system is presented. In the second part of the paper some aspects regarding the designing of the induction motor are presented. Then some aspects concerning the voltage source inverter designing are exposed.展开更多
文摘Both Hybrid Electric Vehicles (HEVs) and Electric Vehicles (EVs) need a traction motor and a power in-verter to drive the traction motor. The requirements for the power inverter include high peak power, opti-mum consumption of energy, low output harmonics and inexpensive circuit. In this paper, a new structure of multilevel inverter with reduced number of switches is proposed for electric vehicle applications. It consists of an H-bridge and an inverter in each phase which produces multilevel voltage by switching the dc voltage sources in series. As the number of switches are reduced, both conduction and switching losses will be de-creased, which leads to increase the efficiency of converter. The size and power consumption of driving cir-cuits are also reduced. The proposed three phase inverter can produces more number of voltage levels in the same number of the voltage source and reduced number of switches compared to the conventional inverters. This structure minimizes the total harmonic distortion (THD) of the output voltage waveforms. The structure of proposed multilevel inverter, modulation method, switching losses, THD calculation and simulation re-sults with PSCAD/EMTDC software are shown in this paper.
基金This work was supported by National Key R&D Program of China(No.2016YFB0100600)。
文摘Along with the rapid growth in electric vehicle(EV)market,higher power density and more efficient motor drive inverters are required.It is well known that silicon carbide(SiC)has advantages of high temperature,high efficiency and high switching frequency.It is believed that the appropriate utilization of these merits can pave the way to ultra-high power density inverters.This paper presents issues about SiC chip’s current-carrying capability enhancement which is crucial for a compact inverter of tens and hundreds of kilowatts.Technical approaches towards ultra-high power density EV inverter including SiC module packaging,dc-link capacitor function analysis and system level integration are discussed.Different PWM algorithms which may improve efficiency and help to reduce the inverter volume are also studied.
文摘Electrification of vehicles intensifies their cooling demands due to the requirements of maintaining electronics/electrical systems below their maximum temperature threshold.In this paper,passive cooling approaches based on heat pipes have been considered for the thermal management of electric vehicle(EV)traction systems including battery,inverter,and motor.For the battery,a heat pipe base plate is used to provide high heat removal(180 W per module)and better thermal uniformity(<5°C)for the battery modules in a pack while downsizing the liquid cold plate system.In the case of Inverter,two phase cooling system based on heat pipes was designed to handle hot spots arising from high heat flux(∼100 W/cm2)–for liquid cooling and provide location independence and a dedicated cooling approach-for air cooling.For EV motors,heat pipebased systems are explored for stator and rotor cooling.The paper also provides a glimpse of development on high-performance microchannel-based cold plate technologies based on parallel fins and multi-layer 3D stacked structures.Specifically,this work extends the concept of hybridization of two-phase technology based on heat pipes with single-phase technology,predominately based on liquid cooling,to extend performance,functionalities,and operational regime of cooling solutions for components of EV drive trains.In summary,heat pipes will help to improve and extend the overall reliability,performance,and safety of air and liquid cooling systems in electric vehicles.
基金funded by Tsinghua University-Weichai Power Intelligent Manufacturing Joint Research Institute (WCDL-GH-2022-0131)。
文摘For electric vehicles (EVs),it is necessary to improve endurance mileage by improving the efficiency.There exists a trend towards increasing the system voltage and switching frequency,contributing to improve charging speed and power density.However,this trend poses significant challenges for high-voltage and high-frequency motor controllers,which are plagued by increased switching losses and pronounced switching oscillations as consequences of hard switching.The deployment of soft switching technology presents a viable solution to mitigate these issues.This paper reviews the applications of soft switching technologies for three-phase inverters and classifies them based on distinct characteristics.For each type of inverter,the advantages and disadvantages are evaluated.Then,the paper introduces the research progress and control methods of soft switching inverters (SSIs).Moreover,it presents a comparative analysis among the conventional hard switching inverters (HSIs),an active clamping resonant DC link inverter (ACRDCLI) and an auxiliary resonant commuted pole inverter (ARCPI).Finally,the problems and prospects of soft switching technology applied to motor controllers for EVs are put forward.
文摘The paper deals with the designing of an electric drive system used for hybrid electric vehicles. The driving system is realized with an induction motor and a voltage source inverter. Specifically, the application is for a series hybrid vehicle powered by electric storage batteries charged by solar batteries. In the first part of the paper the designing of the electric storage batteries and of the photoelectric system is presented. In the second part of the paper some aspects regarding the designing of the induction motor are presented. Then some aspects concerning the voltage source inverter designing are exposed.